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Abstract A new Receptor-Dependent LQTA-QSAR

approach, RD-LQTA-QSAR, is proposed as a new 4D-

QSAR method. It is an evolution of receptor independent

LQTA-QSAR. This approach uses the free GROMACS

package to carry out molecular dynamics simulations and

generates a conformational ensemble profile for each

compound. Such an ensemble is used to build molecular

interaction field-based QSAR models, as in CoMFA. To

show the potential of this methodology, a set of 38 phe-

nothiazine derivatives that are specific competitive T. cruzi

trypanothione reductase inhibitors, was chosen. Using a

combination of molecular docking and molecular dynamics

simulations, the binding mode of the phenotiazine deriva-

tives was evaluated in a simulated induced fit approach.

The ligands alignments were performed using both ligand

and binding site atoms, enabling unbiased alignment. The

models obtained were extensively validated by leave-N-out

cross-validation and y-randomization techniques to test for

their robustness and absence of chance correlation. The

final model presented Q2 LOO of 0.87 and R2 of 0.92 and a

suitable external prediction of Q2
ext= 0.78. The adapted

binding site obtained is useful to perform virtual screening

and ligand structure-based design and the descriptors in the

final model can aid in the design new inhibitors.

Keywords LQTA-QSAR � T. cruzi � Docking �
Molecular dynamics simulations

Introduction

American trypanosomiasis or Chagas’ disease is one of the

most serious protozoan diseases. It occurs throughout Latin

America, particularly in South America. It is mainly

transmitted to man by the infected feces of a blood-sucking

triatomine bug through the insect’s sting [1]. Coura and

Viñas [2] have recently reported that the T. cruzi parasite

can travel with population movements from endemic to

non-endemic countries such as North America, the western

Pacific region, and also Europe. There are no prophylactic

drugs to prevent infections with T. cruzi. The current

chemotherapy of Chagas’ disease is based on the nitroa-

romatic compounds benznidazole and nifurtimox. Com-

pounds with low toxicity and increased efficacy during the

indeterminate and chronic phases, are still needed [3].

The parasites belonging to the Trypanosomatidae family

have a unique thiol-dependent redox metabolism based

upon the substrate trypanothione [T(SH)2], which is

reduced to trypanothione disulfide [T(S)2], and specific

enzymes including a trypanothione reductase (TR). This

system is absent in the mammalian host, being replaced by

the omnipresent glutathione reductase (GR), which has

glutathione (GSH) as substrate [3]. Host GR is not able to

reduce TR substrate, trypanothione disulfide (T[S]2) and

this mutually exclusive recognition of substrates between

host and parasite enzymes suggests that a selective inhib-

itor design approach could be achieved, since the reduction

of (T[S]2) is crucial for maintaining the reducing intracel-

lular environment of these parasites [4].

X-Ray crystallographic data for TR from T. cruzi is

available in its free form and complexed with its natural

substrates [5–7]. Rational drug design of potent inhibitors

requires accurate structures of enzyme-inhibitor com-

plexes, and a T. cruzi TR complexed with a competitive
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inhibitor (Fig. 1, Compound 1) is available [4]. When T.

cruzi TR is compared to human GR, four out of five resi-

dues inside the active site, where mepacrine is bound, are

not conserved. That provides selective inhibition of the

parasite enzyme, which can be explored for drugs against

T. cruzi [8]. Thus, different classes of tricyclic compounds

have been shown to be competitive TR inhibitors [9].

Molecular modeling led to the early discovery of

imipramine, phenothiazine, and other tricyclic antidepres-

sants as specific competitive inhibitors for T. cruzi TR over

GR [10]. The dibenzazepine drug chlomipramine (Fig. 1,

compound 2) inhibits T. cruzi TR with a inhibition constant

(Ki) value of 6.5 lM. Studies on phenothiazines, contain-

ing (dimethylamino) propyl and (dimethylamino) ethyl

substituents, underlined the role of a hydrophobic core and

positively charged side chain for ligand binding at the

active site of T. cruzi TR [11].

Chlorpromazine (Fig. 1, compound 3) was found to be a

much more efficient inhibitor of T. cruzi TR than human

GR (Ki values of 10 lM and 762 lM, respectively). In

contrast, phenothiazines with quaternary positive nitrogen

replaced by a negative carboxyethyl side chain showed a

nine-fold selectivity for GR over T. cruzi TR inhibition,

demonstrating the importance of of a positive moiety in the

inhibitors’ structures [11]. The most potent inhibitor (A6)

(Fig. 1, compound 4) presented a Ki value of 120 nM,

which is about two orders of magnitude lower than the

parent chlorpromazine [12].

Building a 3D-QSAR (quantitative structure–activity

relationship) model would not be an easy task due to the

lack of crystallographic data regarding the phenothiazine

inhibitors complexed to T. cruzi TR. In order to estimate

correctly the binding modes, one can make use of molec-

ular docking. However, the enzyme TR from T. cruzi,

which has many degrees of freedom, would certainly adopt

an appropriate conformational arrangement to accommo-

date the phenothiazine inhibitors and, unfortunately, the

motions involved in this enzyme-inhibitor fitting process

are not yet properly considered in the available molecular

docking approaches. Even small motions, such as the local

rearrangement of the amino acid side chains and the loops,

have an undesirable effect on the docking results. One

strategy to overcome these docking issues, for instance, is

taking into account protein flexibility employing molecular

dynamics (MD) simulations with explicit solvent [13].

MD is an powerful tool, now routinely applied to sim-

ulate complex dynamic processes that occur in biological

systems, such as those involved in the molecular recogni-

tion of a certain drug by its target (receptor, enzyme, DNA,

etc.) [14]. Despite all MD capabilities, there are a very few

studies reporting the combination of QSAR and MD sim-

ulations. Thus, the building of receptor and time-dependent

QSAR models [receptor-dependent (RD) 4D-QSAR] has

some advantages when compared to a mono configura-

tional 3D-QSAR analysis [15]. In a RD 4D-QSAR, protein

flexibility and induced fit can be explored and the ligand

alignment bias can be minimized by performing MD sim-

ulations of the complex ligand-receptor.

A new 4D-QSAR approach, named LQTA-QSAR

(LQTA, Laboratório de Quimiometria Teórica e Aplica-

da), was recently reported [16]. This methodology simul-

taneously explores the main features of CoMFA and 4D-

QSAR [17] paradigms. LQTA-QSAR makes use of the free

GROMACS package [18] to carry out the MD simulations

and to generate the conformational ensemble profile (CEP)

for each compound or ligand of the investigated set. MD

simulations can be carried out in a system bearing any

desirable degree of complexity, as in this case, where the

enzyme T. cruzi TR and its inhibitors are surrounded by

bulky aqueous media and counterions. The ligands’ MD

frames from this temporal representation of the binding

phenomenon, when aligned to the remaining ligands, can

be used to calculate 3D molecular properties and, subse-

quently, build RD 4D-QSAR models.

In the present study, molecular docking and MD simu-

lations were combined to simulate the induced fit of 38

phenotiazine derivatives as T. cruzi TR inhibitors [12, 19,

20]. Additionally, a RD 4D-QSAR approach was per-

formed to verify that the binding mode suggested for the

phenothiazine derivatives by the combination of molecular

docking and MD simulations generated reliable models

with chemical and biological meaning and also having a
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Fig. 1 Chemical structures of mepacrine (1), chlomipramine (2), chlorpromazine (3), and the inhibitor A6 (4)
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good external predictability (test set). The ligands’ align-

ments were explored based upon both ligand and binding

site atoms, which is capable of providing unbiased CEP

alignment.

Methodology

A three-dimensional structure of inhibitor (mepacrine)

complexed to T. cruzi TR was retrieved from PDB [21]

under the entry code 1GXF, [22] in which the inhibitor

binds to the receptor as a dimer. The binding pocket shape

carved by this mepacrine pair is significantly different from

any other chlorpromazine derivative binding mode. The

later compound contains a bent tricyclic ring and might

bind in different ways in the same pocket. Therefore, the

binding site must be adjusted in order to properly fit the

phenothiazine derivatives (induced fit). These structural

changes cannot be achieved by molecular docking itself,

but through the combination of molecular docking, to bind

the ligands, and MD simulations, to simulate the induced

fit. This combined approach can account for a more real-

istic representation of the complex T. cruzi TR-phenothi-

azine derivatives and, consequently, to more reliable RD-

LQTA-QSAR models. The most active compound (A6)

(Fig. 1, compound 4) was the first used for this purpose and

a detailed stepwise procedure is reported in the section

named Receptor molecular model.

Ligand molecular models

Ligands’ molecular structures were built using Gauss View

[23]. The structures were energy-minimized by applying

the DFT/M052x [24] level and the cc-pVDZ basis set

employing Gaussian’03, [25] and a CHELPG [26] popu-

lation analysis was carried out. The optimized structures

were used to produce the gromos96 ligand’s topologies at

the PRODRG [27] server. The estimation of the proton-

ation state at pH 7 for all ligands complexed with the T.

cruzi TR model was performed using the PROPKA [28]

web server. Table 1 presents the chemical structures of the

38 phenothiazine derivatives used as ligands in this RD-

LQTA-QSAR analysis.

The biological activities were expressed as the free

binding energies (DG, kcal/mol), which were calculated

from the inhibitory binding constant (Ki, mM) values using

the equation DG ¼ �RT ln Ki, where T is the absolute

temperature and R is the gas constant.

Receptor molecular model

The complex structure 1GXF [22] was used to build up the

receptor model. Mepacrine covalently bound to T. cruzi TR

was eliminated, the aminoacid residues were properly

rebuilt, and the final structure was refined using DeepView

[29]. The protonation state of the aminoacid residues at pH

7 was estimated employing the PROPKA [28] web server.

The final protein model was used to perform the molecular

docking of ligand A6. The GROMOS force field was

employed to represent the protein structure in the MD

simulations performed by GROMACS 4 [18]. After the

MD simulations with ligand A6 bound to T. cruzi TR, the

modified protein structure was used to dock the remaining

ligands.

Binding site adaptation

Autodock [30] was used to generate several poses of the

A6 inhibitor, selected because of its higher activity and its

suitable size. Several distinct docking poses were used as

starting points for MD simulation of 1 ns. At the end of

each simulation, the energy of the interaction ligand-sur-

roundings was evaluated to decide which complex was the

most favorable. The binding pocket of the best binding

pose was selected to be used to re-dock A6 in order to

obtain important interactions within the binding site. Then,

like in the previous docking, a few poses were selected and

resubmitted to MD simulations. When inspecting the

obtained results, if eventually no further improvements

could be made, the binding pocket was considered to be

adapted to A6. The optimum binding pocket was then used

to dock the remaining analogues with a higher consistency

when compared to the original mepacrine pocket. Fig. 2

gives a general representation of the desired procedure. A

similar procedure was performed for every ligand in order

to obtain the most favorable binding mode.

Molecular dynamics simulations

Each complex obtained from the docking procedure was

submitted to a MD simulation. The complex was first

placed in a cubic box with a minimum 10 Å distance from

the protein surface and the box border, which was then

filled with SPC/E water molecules. Counterions were

added, so that the system had zero net charge. Periodic

boundary conditions were observed in the cubic box when

submitted to the simulations. The initial complexes had

their geometry optimized employing the steepest descent

and conjugated gradients minimization algorithms. As

convergence criterion, the system energy was minimized

until the maximum force acting on the atoms was not

higher than 50 N. If this criterion was not achieved, a

second order algorithm (LBFGS) [31] would be used to

reach system convergence.

Water positions were relaxed using protein and ligand

positions restrained in MD simulations at 298 K. Then, the
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whole system was warmed up by performing 50 ps simu-

lations at 50, 100, 200 and 350 K. Subsequently, the sys-

tem was cooled down to 300 K and simulated during

1000 ps. Long-range electrostatic interactions were calcu-

lated using the particle-mesh Ewald method. Lennard-

Jones and short-range Coulombic interactions were cut off

at 1.1 nm. Pressure was kept constant by a Parrinello-

Rahman barostat and the temperature was kept constant

using a Berendesen thermostat. Integration was carried out

every one fs time step. Backbone atomic positions were

restrained during the simulations. The stabilization of the

root mean square deviation (RMSd) values of the binding

site relative to the first frame of MD simulation at 300 K

was used as criterion to select the time interval to provide

the conformations for the RD-LQTA-QSAR analysis. If

one nanosecond simulation was not enough for RMSd

stabilization a further one ns simulation would be

employed. The ‘‘modified protein structure’’ corresponds to

Table 1 Chemical structures of

phenothiazine derivatives and

their respective biological data,

expressed as the free binding

energies (DG, kcal/mol)
N

S

N
R

Code R
ΔG 

(kcal/mol)
Ki

(µm)
Code R

ΔG 

(kcal/mol)

Ki

(µm)

A6

Cl
Cl 9.50 0.12 10a

O
CH2Ph 8.68 0.47

1a 8.08 1.3 11a

CH3
CH3
CH3 8.46 0.68

2a

CH3

7.88 1.8 12a 7.74 2.3

3a
Cl

7.92 1.7 13a
Ph

Ph
8.44 0.71

4a

Cl

7.71 2.4 14a 7.97 1.55

5a
Br

7.99 1.5 15a

O

8.11 1.23

6a

NO2

7.58 2.98 16a

OO OCH3

8.58 0.56

7a
CH3

CH3

8.68 0.47 17a

O

Cl

CH3 8.02 1.43

8a

OCH3

OCH3

8.39 0.77 18a CH3 8.18 1.1

9a

F

F

F F

F

7.93 1.67
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Table 1 continued

HN

S

NR

1b
O

CH2Ph 6.36 6.6 4b

Cl
Cl 5.35 1.69

2b

CH3
CH3
CH3 5.03 6.5 5b

Ph

Ph
7.79 5.3

3b 6.41 14.2

6
N

S
N

Cl

6.81 10.8 13
N

S

N
7.12 216

7 N
S

N 5.44 108 14 N
S

N 7.24 127

8
N

S
N

CF3

5.43 110 15 H
N

S

N

Cl

6.33 280

9
N

S
N

Cl

N
OH

6.41 21.2 16
H
N

S

N

Cl

5.99 90

10 N
S

N

CF3

NH

6.36 23.0 17 NH

S

Cl 6.20 11.3

11 NH

S

Cl 6.45 20 18 NH

S

Cl 5.84 24.7

12 NH

S

Cl 6.33 24.5 19
NH

S

Cl

NO2

7.12 42.8
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the average of conformations regarding the time span

where the RMSD values were stable.

Receptor Dependent LQTA-QSAR alignment, model

building and validation

The conformations required to create the time dependent

molecular interaction field descriptors to build the LQTA-

QSAR models were obtained from the MD simulations.

Every simulation uses initial coordinates resulting from the

docking of each ligand to the binding site, which was

adapted as previously described. The aligned conforma-

tions from the MD simulations of each one of the 38

ligands (see Table 1) provide the conformational ensemble

profile (CEP) of each ligand. The molecular alignment of

the MD frames was performed using the GROMACS

program g_confrms. A novel procedure of molecular

alignment was adopted in this work where, instead of using

only the ligand atoms, a few atoms from the binding pocket

were also selected (see Fig. 3). Such receptor-based

alignments proved to be advantageous compared to a

ligand-based alignment. The atoms were chosen to com-

prise the whole extent of the ligand and adjacent ones in

the binding site. Since the ligands are confined inside the

binding pocket no significant differences on the resulting

CEPs are observed independent of the atoms chosen. This

strategy enabled the maintenance of each ligand in a par-

ticular binding mode.

The aligned CEP of each ligand was the input to the

LQTAgrid [16] module to generate the interaction

descriptors. These descriptors are the interaction energy

with the probe for every conformation divided by the

number of conformations. A box size of 22 9 22 9 18 Å,

with 1 Å resolution, was used to compute interaction

energy descriptors, producing a total of 17,424 descriptors.

The probe used was –NH3
?, representing the N-terminus

moiety of a protein, to generate the Lennard-Jones inter-

action descriptors (LJ). The probe had a ?1 point charge to

produce Coulomb interaction descriptors (QQ).

LJ descriptors were truncated according to Eq. 1 to

avoid positive values with high orders of magnitude and, at

the same time, to keep information in the region close to

the atoms of the molecule.

if LJx;y;z� 30 kcal mol�1 then LJ
0

x;y;z ¼ LJx;y;z

if LJx;y;z [ 30 kcal mol�1 then LJ
0

x;y;z ¼ 30

þ log10

LJx;y;z

kcal mol�1
� 29

� �
ð1Þ

The descriptors were arranged in a matrix X of

dimensions (38 9 17,424). Descriptors associated with

the probe positions excessively distant from the CEP, and

difficult to interpret, were eliminated a priori [32]. In order

to do so, variables with variance lower than 0.01 kcal/mol

were excluded. Descriptors having absolute values of

Pearson correlation coefficients with the biological activity

lower than 0.3, expressed as DG, were eliminated. In

addition, descriptors whose scatter plots versus the

dependent variable DG showed non-uniform dispersion

were also filtered using the CDDA digital filter approach

[33]. After filtering, those descriptors which presented PLS

regression coefficient signs different from the sign of their

correlation coefficient with the biological activity were

manually eliminated [34].

Internal cross-validation was carried out using the leave-

one-out (LOO) procedure to define the optimum number of

factors in PLS. The final model was validated applying the

leave-N-out (LNO) cross-validation and y-randomization

tests, which are highly recommended to check model

robustness and the presence of chance correlations,

respectively [35].

Fig. 2 Iterative scheme used to

adapt the T. cruzi TR binding

site for the phenothiazine

derivatives

Fig. 3 Selected atoms from the ligand and binding pocket to be used

in the molecular alignment employed in the LQTAQSAR

methodology
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In the LNO test, the training set of I samples is divided

into consecutive blocks of N samples. Each block is

excluded once, a new model is built without it, and the

values of the dependent variable are predicted for the block

in question. LNO is performed for N = 2, 3, etc., and the

leave-N-out cross-validated correlation coefficients (Q2

LNO, Table 1) are calculated. The model is considered

robust if the deviation of the Q2 LNO values from the Q2

LOO reference value are smaller than 0.05 for at least

25 % of data set samples. The y-randomization test con-

sists of several runs for which the original descriptors

from matrix X are kept fixed, and only the vector con-

taining the activities, y, is randomized (scrambled). The

models obtained under such conditions should be of poor

quality and without real meaning. A model is not consid-

ered statistically relevant if the Q2 LOO for the scrambled

y is higher than 0.2 and the correlation coefficient of

multiple determination (R2) of the scrambled y is higher

than 0.4 [35].

A PLS model was constructed for a training set con-

taining 32 phenothiazine derivatives, and the model’s

quality was evaluated regarding the Q2 and R2 statistical

parameters, LNO and y-randomization tests [35]. The

optimum or the best model was used to predict the DG

value of six selected ligands based upon hierarchical

cluster analysis to be a representative subset [34], the test

set (external validation). The external predictability was

evaluated by the Q2
ext statistical parameter. The descriptors

of the best QSAR model were illustrated in the 3D space

employing ViewerLite [36] software and a detailed inter-

pretation was provided.

Results and discussion

Regarding the binding site adaptation procedure, the

molecular docking of A6 provided four conformations

which fit in the mepacrine binding site. As already men-

tioned, the four selected poses for the A6 inhibitor were

submitted to a MD simulation of 1 ns. The best binding

pocket revealed the strong tendency of the A6 inhibitor to

be buried into the active site closer to the amino acid

residue TRP21 (see Fig. 4 a). Also, the quaternary nitrogen

was not placed near the Glu18 residue, so the docking

procedure had to be reapplied to favor this interaction.

Again, a few distinct conformations which likely interact

with Glu18 were selected and submitted to MD

simulations.

After the second iteration, which successfully optimized

the binding site, an ionic interaction between the quaternary

nitrogen of the inhibitor and the Glu18 residue of the active

site was established (Fig. 4b). Other interaction features

considering the inhibitor and the T. cruzi TR active site were

observed, where reasonable p-p stacking interactions

involving the Trp21 residue were refined. Additionally, an

arene edge-to-face interaction could be formed involving the

Phe114 and Tyr110 residues. The tricyclic antidepressants

have been postulated to bind T. cruzi TR with the ring system

lodged against the hydrophobic wall formed by Trp21 and an

adjacent Met113 [19, 22]. A few docking approaches [13,

37] include a possible interaction with the Glu18 residue as

observed in the T. cruzi TR-mepacrine complex. Additional

interaction points, such as the inhibitor’s quaternary nitrogen

and the Glu18 residue, as well as the ring attached to the

inhibitor’s quaternary nitrogen and the Tyr110 residue,

could explain almost 100-fold higher T.cruzi TR affinity

found for the phenothiazine derivatives, as reported by Khan

et. al. (A6, Ki 0.12 ± 0.01 lM), than for chlorpromazine

(Ki = 10.8 ± 1.1 lM) [12].

A recent study also using molecular docking and MD

simulations proposed a similar binding mode [13]. The

authors suggested that phenothiazine T. cruzi TR inhibitors

were in the vicinity of the natural substrate T[S]2, near the

enzyme disulfide bridge. In that place, derivatives would be

in contact with a hydrophobic pocket surrounded by the

residues Glu18, Trp21, Leu17, Tyr110, Met113, and

Phe114. This proposed binding mode allows the estab-

lishment of a strong interaction between the charged amino

group of the inhibitor and the carboxylate group of the

Glu18 residue. This binding mode is in agreement with the

hypothetical binding mode obtained in this work (see

Fig 4b). However, the main difference concerns the role of

Fig. 4 a The most energetically

favorable binding mode from the

first MD simulation showing the

inhibitor buried in the active site

and closer to the residue Trp 21,

but still far from Glu18; b the

postulated binding mode for

phenothiazine derivatives at the

active site of T.cruzi TR,

showing some key interactions

with the binding site
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the Trp21 residue, which might work as an anchor to the

bent tricyclic phenothiazine ring system. All these findings

were considered reliable enough to represent the binding

mode of the investigated phenothiazine derivatives and

provide quite good conformation sampling profiles to

develop a RD-LQTA-QSAR approach.

Each particular phenothiazine analogue tends to bind

somewhat differently inside the binding site. For this rea-

son, the alignment procedure has to be able to maintain

every particular ligands binding model. By considering

atoms from both, the ligands and binding site, it was pos-

sible to retain a common ligands binding mode, providing

good CEPs that could generate reliable descriptors and

ultimately 4D-QSAR models of good quality.

After the descriptors filtering and selection, accom-

plished by the ordered prediction algorithm (OPS) [38], a

model having good statistical parameters (Q2 LOO = 0.87,

R2 = 0.92) and suitable external prediction (Q2
ext= 0.78)

was obtained. These findings underline the significance of

using alignments based upon particular ligand binding

modes. A PLS model containing 3 LV was built using the 7

selected descriptors. Figure 5 shows scatterplots of pre-

dicted versus experimental and also the residual for the

training set, the results are shown in detail in Table 2. The

external data set was small due to the reduced number of

compounds that contain reliable experimental data.

The leave-N-out validation test provided a proper indi-

cation regarding robustness. The best model maintained its

predictability up to N = 10 samples out (32 % samples

out) when the deviation values Q2LNO � Q2LOO became

higher than 0.05 and had elevated standard deviations

(Fig. 6A). The y-randomization test also presented satis-

factory results. The procedure was run 100 times. The

random models had R2 values lower than 0.4 and Q2 values

lower than 0.2 (Fig. 6b). The intercept test for y-random-

ization as described by Eriksson et al. [39] was carried out.

Fig. 5 Scatterplots of predicted versus experimental values for the

training set (red dots) and external validation (blue dots)

Table 2 Experimental and predicted DG values for training and test sets

Mol Predicted Experimental Percent error (%) Mol Predicted Experimental Percent error (%)

16a 8.32e 8.58e -3 15a 7.89 8.11 -3

14a 8.24e 7.97e 3 16a 8.20 8.02 2

6a 7.33e 7.58e -3 18a 8.15 8.18 0

13 6.81e 7.11e -4 2b 5.17 5.03 3

9 7.28e 6.45e 11 4b 5.51 5.35 3

11 5.43e 5.80e -7 3b 6.38 6.41 0

1a 8.32 8.08 3 1b 6.55 6.36 3

2a 7.57 7.88 -4 5b 8.36 7.79 7

3a 7.97 7.92 1 7 7.78 7.92 -2

4a 7.73 7.71 0 8 6.70 6.65 1

5a 7.89 7.99 -1 14 6.87 7.24 -5

A6 9.00 9.50 -6 10 6.51 6.79 -4

7a 8.30 8.68 -5 15 6.21 6.33 -2

8a 8.54 8.39 2 16 5.66 5.99 -6

9a 8.30 7.93 4 6 7.48 6.81 9

10a 8.73 8.68 1 17 6.38 6.20 3

11a 8.10 8.46 -5 18 6.39 5.84 9

12a 8.25 7.74 6 12 5.47 5.49 0

13a 7.97 8.44 -6 19 6.71 7.12 -6

Values are in kcal, e test set
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The intercept obtained for R2 was 0.18, which is lower than

the maximum allowed value of 0.3. For Q2 LOO the

intercept value was -0.58, which is also lower than the

0.05. These results also attest to the model’s absence of

chance correlation.

The descriptors of the best QSAR model are graphically

represented in two views (Figs. 7a, b). A few descriptors

were sufficient to describe the ligand free energy of inter-

action. None of the QQ descriptors appeared in the final

model since augmented ligand positive charge does not

necessarily enhance affinity towards T. cruzi TR. LJ

descriptors are depicted in different colors in Figs. 7a, b,

where each one represents its peculiar contribution to the

model. The descriptors LJ1 and LJ2 are associated to the

probe placed far enough from the CEPs, and they represent

interactions with the binding residues. Red LJ3-6 and blue

LJ7 descriptors (Fig. 7a) are related to the probe closer to

the CEPs and describe structural information related to the

conformacional flexibility and shape of the ligands.

LJ1 and LJ2 can be better interpreted when the closer

residues in the binding site are plotted simultaneously

(Fig. 7b). LJ1 can be related to the ligand’s ability to get

closer to the Glu18 residue and provide more efficiently a

charge–charge interaction type. Another interesting

descriptor is LJ2, which points out a hydrophobic inter-

action that can be further explored when dealing with

molecular modifications. Increasing the length of the qua-

ternary nitrogen substituent (methyl group to ethyl or

longer) can improve the interaction with the Ile335 residue

resulting in better ligands. The more negative LJ1 and LJ2

descriptors values are, the more effective is the interaction

with these regions in the active site, thus the free energy of

binding is higher.

The descriptors LJ3 to LJ7 are associated to molecular

modification of the various ligands and their ability to

occupy certain positions in the T. cruzi TR binding pocket.

LJ3 is related to chlorine, -CF3 or hydrogen, for example,

in the phenothiazine ring. LJ4 can be associated to some

analogues where the tricyclic ring system is opened (less

potent molecules). LJ5 and LJ6 can be related to the

number of carbon atoms in the connecting chain or to the

volume around the quaternary nitrogen. LJ7 is positively

Fig. 7 a Descriptors (blue,

orange and red spheres) of the

best model; b Descriptors

related to the amino acid

residues within the binding

pocket (orange spheres).

Descriptors in red and orange

have a negative regression

coefficient sign; LJ7 (blue) is

the only descriptor which has a

positive regression coefficient

sign

BAFig. 6 a LNO cross-validation

results obtained for the final

QSAR model. The LNO results

are plotted as the difference

Q2LNO� Q2LOO and the

related standard deviation for 20

repetitions. b y-randomization

results plotted as R2 versus
Q2 values
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associated to an aromatic ring as substituent at the qua-

ternary nitrogen, which improves the free energy of bind-

ing through an additional interaction to the Tyr110 residue.

Conclusions

A receptor dependent, time dependent LQTA-QSAR

methodology (RD-LQTA-QSAR) was introduced in this

work. The RD-LQTA-QSAR is an improvement of the

receptor independent LQTA-QSAR methodology, but it

can only be applied when the target structural information

or, at least, a good homology model is available, associated

to reliable experimental interaction data of the respective

ligands. The results can be used directly for structure-based

drug design, being a promising tool for drug discovery.

A novel alignment procedure for the investigated

ligands was proposed to provide unbiased conformational

ensemble profiles and to be used for calculating the LQTA-

QSAR descriptors employed in the construction of a robust

QSAR model with suitable predictive power. The impor-

tance of optimizing the binding pocket in the complex T.

cruzi TR-mepacrine to accommodate structurally different

ligands was explored and found to be crucial.

The binding mode of the bent tricyclic inhibitors of TR

was postulated. The interactions of the residues present

only in TR, rather than GR, was explored to provide a

reasonable binding mode that is able to explain the selec-

tivity, as well as the potency of the studied dataset.

The findings reported in this study can be quite useful

for the rational design and screening of new T. cruzi TR

inhibitors with better pharmacokinetic and lower toxicity

properties. Since weak correlations of in vivo activities

against T. cruzi and in vitro inhibition of T. cruzi TR are

found, molecular modifications might be pursued to

improve such drug delivery aspects as cell penetration.

Improving ligand hydrophobicity can be used to solve such

issues by exploring RD-LQTA-QSAR interaction descrip-

tor with the nearby isoleucine.
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