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1 Introduction

The aim of quantitative structure-activity and structure-
property relationships (QSAR/QSPR) is to create models
that can predict activity or property and explain the rela-
tionships between molecular features and the biological ac-
tivity or a given property. Once such a model is found, a
set of compounds of reasonable size, including those not
yet synthesized and placed on the model’s response sur-
face, can be screened automatically to design structures
with the desired properties. It is then possible to select the
most promising compounds for synthesis and bioassays in
the laboratory. Thus, QSAR/QSPR studies can reduce costs
and accelerate the process of designing new substances to
be used as drugs, new materials, additives, or even for
other purposes.[1]

Spatial molecular properties are used to generate de-
scriptors to build QSAR models in the so-called 3D-QSAR.
The best known 3D-QSAR methodology is the comparative
molecular field analysis (CoMFA).[2] In a standard CoMFA
procedure selected conformers of the studied molecules
(one per molecule) are superimposed in a manner defined
by a supposed mode of interaction with a target macromo-
lecule. Then, the steric and electrostatic molecular interac-
tion fields (MIF) of these compounds are calculated with a
probe such as a sp[3] carbon atom with + 1 charge, at regu-
larly spaced points of a three-dimensional grid. The calcu-
lated energy values are then related to the biological activi-
ty by partial least-squares (PLS) regression. The final CoMFA
model is derived using the optimum number of latent vari-
ables (LV) determined by cross-validation and the results
are usually displayed as contour maps.[3] A good CoMFA
model must have satisfactory statistical significance, explan-
atory capability for the variance of the activity of the com-
pounds in the training set, and sufficient predictive power
for new compounds.

MIF are computed using intrinsically continuous func-
tions, described by analytic expressions at the 3D grid
points defined by regular intervals over the space sur-

rounding the molecules. This method has the disadvantage
of producing a huge amount of computed data (potential
descriptors). Not all of these variables describing the space
around the molecules are equally relevant. Usually, useful
descriptors are concentrated in specific regions character-
ized by important molecule-probe interactions within the
3D grid. If the MIF is used to describe a binding pocket
within a biological receptor, then the corresponding re-
gions represent promising locations for molecular modifica-
tion. On the other hand, when the MIF is used to character-
ize intrinsic ligand properties, the corresponding regions
represent groups of the receptor binding site with which
the ligand molecule could establish favorable binding inter-
actions. In either case, these regions mean favored loca-
tions holding highly relevant information for describing the
ability of the two molecules to interact.[4]

It is obvious that variable selection is a very important
issue when building 3D-QSAR models. By selecting appro-
priate descriptors, it is possible to construct interpretable,
robust and predictive models. Numerous methods have
been developed for this purpose and are widely applied in
3D-QSAR.[5] The MIF descriptors are most commonly sub-
mitted to variable selection using the GOLPE approach
(generating optimal linear PLS estimates),[6] the Smart
Region Definition (SRD)[7] and the Modified Iterative/Unifor-
mative Variable Elimination-PLS (IVE/UVE-PLS) Method.[8]

These procedures were optimized to produce interpretable
contour maps.
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Abstract : Descriptor properties are often neglected when
building 3D-QSAR models. The relevance of correlation and
distribution profiles is tested in terms of the models’ pre-
diction power. A different approach to filter descriptors
prior to variable selection is proposed. Additionally, a proto-

col for molecular interaction field descriptors selection and
model validation is presented. The algorithms and proto-
cols presented are quite simple and enable a different and
powerful way to create parsimonious interaction field-
based models.
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A new MIF methodology has recently been proposed[9]

that uses certain features of the CoMFA and 4D-QSAR para-
digms proposed by Hopfinger et al.[10] This methodology
was named LQTA-QSAR after our research group LQTA
(Laborat�rio de Quimiometria Te�rica e Aplicada - LQTA-
QSAR) and makes use of the free GROMACS package[11] to
execute molecular dynamics simulations and provide con-
formational ensemble profiles (CEPs) generated for each
compound in a data set. Instead of using a genetic algo-
rithm for variable selection as in 4D-QSAR,[12] the MIF de-
scriptors in LQTA-QSAR are selected by means of Ordered
Prediction Selection (OPS).[13]

During the development of the LQTA-QSAR methodolo-
gy, special attention was devoted to eliminate certain de-
scriptors (filtering) prior to using the specialized variable se-
lection algorithm OPS. Two MIF descriptor features were
considered. One of these features is the correlation of a
given descriptor studied and the biological activity data (y).
The other was the spread of each descriptor when com-
pared to y, i.e. , pronounced dispersion of the data points
around the regression line in the corresponding bivariate
plot (Figure 1).

The MIF-based QSAR model must make use of descrip-
tors that are well correlated to y in terms of normal or
quasi-normal bivariate distributions and their distributions
should also be normal or quasi-normal. This type of de-
scriptor responds to variation in y unlike binary ones.
Common normal distribution tests among others can be
used to detect such features as the Kolmogorov-Smirnov,[14]

D’Agostino-Pearson,[15] Shapiro-Wilk,[16] Lilliefors[17] and
Jarque-Bera tests,[18] . Another “simpler” way to assess the
normality or quasi-normality is by inspection of scatterplots
of y versus a given descriptor, as shown in Figure 1. De-
scriptor 1 shows good bivariate distribution profile and de-
scriptor 2 a bimodal distribution. MIF descriptors are de-
rived from continuous functions and, thus, well scattered

normal/quasi-normal descriptors are more suitable for 3D-
QSAR models. Descriptors, such as those in Figure 1 (de-
scriptor 2), have to be avoided. As mentioned before, one
may eliminate these poorly distributed descriptors by using
normality tests, but such tests can eliminate useful descrip-
tors, since minor deviations from normality or quasi-nor-
mality can be detected.

In 1973 Anscombe[19] had already pointed out the useful-
ness of scatterplots in graphical analyses to distinguish
how independent variables are distributed in relation to y.
Common numerical statistical parameters like correlation
coefficients alone or linear regression parameters are not
able to successfully give the same information. It means
that by analyzing bivariate plots of y and a descriptor it is
possible to know if a descriptor follows a normal or quasi-
normal distribution such as that indicated in Figure 1 (De-
scriptor 1). Unfortunately, the use of human intervention to
inspect each descriptor generated from any grid-based
methodology is unfeasible. In this work, a new automated
methodology, named the Comparative Distribution Detec-
tion Algorithm (CDDA) is proposed, which is able to classify
descriptors by means of distribution profile. CDDA com-
pares individual distributions of a descriptor and y and cal-
culates dissimilarity statistics, which enables quick numeri-
cal inspection of bivariate scatterplots and aids in selection
(filtering) of descriptors suitable to build a multivariate
model.

In order to demonstrate the usefulness of descriptor fil-
tering prior to variable selection, three data sets were se-
lected from the literature, for which CoMFA models were
re-built. Poorly correlated descriptors and those not well
distributed in relation to y were eliminated and PLS models
were constructed with the remainder of descriptors. The re-
sulting models were compared with analogues built with-
out using the CDDA filter. Comparisons with results from
the original articles were also made. LQTA-QSAR software

Figure 1. Scatterplots of two hypothetical biological activities y and two descriptors with different scattering profiles. Both descriptors
have similar Pearson correlations with y (0.8), but the distribution profiles are quite different.
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was adapted to reproduce the original data matrices, re-
built in human readable format. Alongside with the CDDA
application in descriptor filtering, a new protocol to build
3D-QSAR models is discussed in detail. The algorithms were
written in MATLAB open code and are available at
lqta.iqm.unicamp.br.

2 Computational Methods

Notation : Scalars are defined as italic lower case characters,
vectors are typed in bold lower case characters and matri-
ces as bold upper case characters. A descriptor retrieved
from the j-th column of the X(I,J) matrix is denoted as xj.

Prior to any filtering and variable selection, descriptors
related to probe positions far from molecular conforma-
tions were eliminated by a variance cut-off in which de-
scriptors with variance below of 0.01 were excluded.[20]

The Lennard–Jones (LJ) descriptors were submitted to a
special treatment due to the presence of positive values of
large orders of magnitude. When the probe is in a position
of the grid very close to a particular atom of the target
molecule, the potential energy values are of high orders of
magnitude due to extremely high repulsion energies de-
rived from the LJ equation. Since using both, large and
small numerical values can be harmful for PLS modeling,
they were submitted to a pretreatment satisfying the rules
given in Equation 1. This transformation ensures that the
information regarding grid points close to ligand atoms
were not completely lost. If a given LJ descriptor computed
at any x,y,z position had its value of energy equal to or
higher than 30 kcal/mol, the log10 of the remainder energy
value was added to 30 kcal/mol. If positions in the grid
have had all the energy values transformed, then the par-
ticular grid points were eliminated. Such transformations
were applied to LJ but not to Coulomb (QQ) descriptors.

LJx;y;z < 30 kcal=mol) LJ0x;y;z ¼ LJx;y;z

LJx;y;z � 30 kcal=mol)

LJ0x;y;z ¼ 30þ log LJx;y;z

kcal�mol�1 � 29
� �

8
>><

>>:
ð1Þ

The resulting descriptors were then filtered by the use of
a correlation coefficient cut-off. In this simple procedure,
descriptors having absolute Pearson correlation coefficients
(j r j) with the y vector at the same level of random noise
are eliminated from the pool. This level is obtained by cal-
culating r of y and a large number of random vectors (rrand).
The histogram of rrand is to follow a normal distribution
around the mean (m= 0) and the upper confidence limit at
99 % of confidence for this distribution can be used as the
j r j cutoff level. It was observed that the confidence limit
varies, depending on how y is distributed and the degrees
of freedom involved. Therefore, each data set that was
chosen to test the filtering procedure had its own j r j cut-off

level calculated by Equation 2.

jrjcut-off ¼ Z0:99sm ð2Þ

where Z0.99 is the number of standard deviations extending
from the mean of a normal distribution (m= 0) required to
contain 99 % of the area and sm is the standard error of the
mean. When the calculated j r j cut-off was lower than 0.3 this
threshold was used.[21]

The next task is to eliminate descriptors with poor distri-
bution profiles with respect to y using CDDA filtering.
CDDA provides a way to quantify how similarly distributed
is y and a given descriptor, aiding the removal of those
similar to descriptor 2 in Figure 1. CDDA is rather simple,
which can be seen from the step-by-step complete algo-
rithm’s description that follows.

Step 1: Each descriptor vector xj (j = 1, 2, …, J) is range-
scaled so its minimum value is zero and the maximum
value is equal to one (Equation 3). A similar treatment is ap-
plied to the dependent variable y to obtain y’

x
0

j ¼
xj � 1xjðmin Þ

xjðmax Þ � xjðmin Þ
ð3Þ

where 1 is a (I � 1) vector of ones, and I is the number of
samples within the data set,

xjðmin Þ ¼ min
1�i�I

xij

�� ��

and

xjðmax Þ ¼ max
1�i�I

xij

�� ��:

Step 2: Similar to a distribution histogram, for each de-
scriptor j, the interval [0,1] is divided into K subdivisions,
k = 2n (n = 1, 2, 3, …), say for example, [0,1/2] and [1/2,1]
for k = 2, and how many values are in each subdivision is
checked. This is carried out by the routine below.

for k ¼ 1, ..., K

for i ¼ 1, ..., I

if f xi � 2�n ðk�1Þ and xi < 2�n kg
or f xi ¼ 2�n k and xi ¼ 1g;
fik ¼ 1

else

f ik ¼ 0; end; end; end

The results are recorded in a logical matrix F(I�K) and
then transformed into the row vector fk(j) by summing over
the rows (accordingly to Equation 4). Each element of fk(j)

vector contains the number of samples in each subdivision
k for each variable j.
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fkðjÞ ¼
XI

i¼1

fi;kðjÞ; k ¼ 1; � � � ; K ð4Þ

A similar procedure is done for y’ resulting in the refer-
ence frequency vector fk(y’).

Step 3 : The difference between each fk(j) and the fk(y’) vec-
tors is computed as the residual vector vk(j) (Equation 5).

vkðjÞ ¼ fkðjÞ�fkðy0Þ ð5Þ

Step 4 : The total error (residual) for the j-th descriptor
for a given n, ej(n), is calculated by taking the 1-norm of
vector vk(j) (Equation 6).

EjðnÞ ¼
XK

k¼1

jVkðjÞj ð6Þ

If a descriptor has exactly the same distribution as y,
then any ej(n) value is zero. But when a descriptor xj and y
have different distributions, vk(j) is no longer a null vector,
indicating that there are dislocated values. This means that
there are over-populated subdivisions and, at the same
time, under-populated ones, increasing the value of ej(n).
Furthermore, the two extreme values (0 and 1) are fixed
and do not contribute to the vk(j) vector. Thus, the maxi-
mum value ej for a descriptor can be given as the number
of samples (I) minus 2, and each value of ej(n) can be nor-
malized to give ej(n) (Equation 7). The values of ej(n) pro-
vide a parameter for comparison of y and a descriptor by
means of their distribution profiles. The closer ej(n) is to
1.00, the more similar are the distributions of y and a de-
scriptor j.

ejðnÞ ¼ 1� ejðnÞ
2I � 2

ð7Þ

The ej(n) values are functions of n and, thus, of the
number of subdivisions. To define a default value for n, sev-
eral data sets were used for computing the difference be-

tween maximum and minimum values of ej(n) for the entire
descriptor pools, in order to investigate how ej(n) varies as
n changes. This was achieved by varying n from 1 to 8 (2
to 256 subdivisions), and calculating ej(n) for matrices re-
produced by the Dragon[22] and LQTA-QSAR programs for
data sets retrieved from literature and our own databank.
The values of n, for which the largest differences between
maximum and minimum ej were obtained, were 3, 4 and 5
(Figure 2).

By analysing Figure 2, the default chosen for n was 4,
meaning the value at which the CDDA was the most sensi-
tive. The parameter ej(4) is simply denoted as ej in the re-
mainder of the text.

Based on tests carried out on the data sets a default
value for ej cutoff of 0.5 was suggested. This parameter is
large enough to remove only very poorly distributed de-
scriptors. This parameter is a user-definable input in the
Matlab command line.

The c2 goodness-of-fit[27] is a well-known method for de-
termining whether observed frequencies deviate signifi-
cantly from their expected frequency. The observed fre-
quencies (O) can be associated to fk(j) and the expected fre-
quency (E) to fk(j). However, it was observed that the way
CDDA is presented provides a stricter way to differentiate
poorly and badly distributed descriptors since it doubles
the penalty for each error when comparing O and E. From
equations in (8) the difference between the two ap-
proaches is visible.

c2 ¼
XI

i¼1

ðOi � EiÞ2=Ei

ej ¼
XI

i¼1

1� ðOi � EiÞ
2I � 2

ð8Þ

3 Method Validation

In order to test the applicability of CDDA for MIF descrip-
tors and to verify whether it is able to improve 3D-QSAR

Figure 2. Results from investigations to define the default value for n for some data sets retrieved from the literature and our databank.
DHFR stands for dihydrofolate reductase,[23] BZR for benzodiazepine receptor,[24] ACE for angiotensin converting enzyme[25] and ACHEfor
acetyl-cholinesterase.[26]
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models in terms of prediction and interpretation, three
data sets from literature in which the CoMFA method was
applied were selected. The chosen data sets contained 3D
molecular conformations in mol2 format with atom type
specifications and attributed atomic charges. Data set (1)
consisted of 114 angiotensin converting enzyme (ACE) in-
hibitors (84 compounds in the training set and 30 for exter-
nal validation) retrieved from the work of Depriest et al.[25]

The activities, expressed as pIC50, are spread over a wide
range of values (from 2.1 to 9.9). Data set (2) consisted of
40 phase-transfer asymmetric catalysts[28] (30 samples for
calibration and 10 for external validation), based on quater-
nary ammonium salts, with experimentally observed selec-
tivity expressed in percentages ranging from �30 % to
91 %. Data set (3) had 362 dihydrofolate reductase (DHFR)
inhibitors (280 samples for calibration and 84 samples for
external validation) extracted from the work of J. J. Suther-
land and D. F. Weaver,[23] with pIC50 values ranging from
3.34 to 9.8.

At first, a model with all samples was built and complete-
ly validated, according to the suggested statistical tests rec-
ommended in the literature.[21] Then, the external data sam-
ples (test set) were defined based on dendrograms built
with the selected descriptors using Hierarchical Cluster
Analysis (HCA).[29] In HCA, the Euclidian distances and the
‘complete’ linkage method to cluster similar samples, were
used. HCA provided a visual aid to define the prediction
set and to avoid removing samples in isolated clusters. The
lowest and highest values for y were never selected. Once
the samples from the test set were defined, the complete
data set was split into training and test sets. New models
were built using the training set, never including samples
from the test set during the processes of variable filtering
and selection. If and only if the models built with the train-
ing set were considered well validated, had good figures of
merit and presented no discrepancies between the sign of
correlation and regression coefficient,[29] they were used to
make predictions on the test set.

Since it is not possible to freely access the CoMFA data
matrices, one can re-generate similar descriptors using the
LQTAgrid module of the LQTA-QSAR package.[9] LQTAgrid
was designed to deal with an ensemble of molecular con-
formations when calculating the MIF descriptors, however,
a single conformation can be handled as well as in CoMFA.
Using a similar probe (carbon sp3 bearing single + 1 point
charge) and the published mol2 charges, the Coulomb in-
teraction energy descriptors were calculated. The Lennard-
Jones descriptors were created using interactions of
GAFF[30] atom types instead of those in Sybyl. It is reasona-
ble to expect that the regenerated descriptors, Coulomb
and Lennard–Jones, are related to those from CoMFA and
so the results from this work can be somewhat comparable
to those from the literature.

The literature mol2 files were converted into the appro-
priate LQTAgrid usage format. The grid dimensions used
were large enough to outgap the coordinates by 5 �, with

0.5 � increments, producing a total of 158 400 descriptors,
for dataset (1). For dataset (2) 162 922 descriptors were
computed, and for dataset (3) 112 800 descriptors. The de-
scriptor fields were separated into Coulomb interaction de-
scriptors (QQ field) and Lennard-Jones interaction descrip-
tors (LJ field).

After the classical variance cut-off, the first step in data
filtering was the elimination of descriptors for which the
correlation coefficient j r j with the dependent variable y
was lower than the noise level. This procedure guarantees
the elimination of the regions in the grid space that cannot
be identified as related to biological activity in terms of
statistical significance. The resulting QQ and LJ fields were
submitted to the CDDA filter. This resulting matrix was
then ready for variable selection and regression model
building using autoscaled data (each descriptor was mean-
centered and scaled to unit variance). Variable selection
was carried out by the OPS algorithm.[13]

The final models were validated by using leave-N-out
(LNO) crossvalidation and y-randomization tests which are
highly recommended to check model robustness and the
presence of chance correlations, respectively. In the first
test, the training set of I samples is divided into consecu-
tive blocks of N samples. Each block is excluded once, a
new model is built without it, and the values of the depen-
dent variable are predicted for the block in question. LNO
is performed for N = 2, 3, etc. , and the leave-N-out cross-va-
lidated correlation coefficients (Q2 LNO, Table 1) are calcu-
lated. The model is considered robust if the deviation of Q2

leave-one-out (LOO) and other Q2LNO does not exceed
0.05 for all values of N up to 20–30 % of samples from the
training set.[21,31]

The y-randomization test consists of several runs for
which the original descriptor matrix X is kept fixed, and
only the y vector is randomized (scrambled). The models
obtained under such conditions should be of poor quality
and without real meaning. Two y-randomization plots j r j x
Q2

yrand and j r j x R2
yrand are drawn for randomized and real

models, and the linear regression lines are obtained.
(Q2

yrand = aQ + bQ j r j , R2
yrand = aR + bR j r j). The real model is

characterized as free of chance correlation when the inter-
cepts are aQ<0.05 and aR<0.3.[32]

The most successful models were presented and com-
pared to those originally from the literature. The descrip-
tors illustrated in 3D space were depicted as spheres using
Chimera software[33] to aid visualization. The statistical qual-
ity of the final models was expressed as Q2 LOO and by the
correlation coefficient of external validation (Q2

pred, Table 1)
obtained for the external validation set. The same proce-
dure: correlation cut-off, variable selection and validation
were applied to QQ and LJ fields without using the filter
CDDA for the sake of comparison.
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4 Results and Discussion

The variable count reduction after the application of the
cut-offs mentioned are summarized in Table 2. It can be
noted that the filters enabled substantial decrease from the
initial pool and clearly resulted in a more tractable amount
of descriptors for specialized variable selection. Highly in-
tercorrelated descriptors (data not shown) were also re-
moved.

The figures of merit for all models after the procedures
described are summarized in Table 3. Comparisons with the
original articles are reported accordingly.

For the sake of comparison with the CoMFA procedure
15 bootstrapping run were performed and the resulting
values of Qpred

2 for randomized external data sets were: (1)
0.74�0.12, (2) 0.84�0.15 and (3) 0.60�0.15 for data sets
(1), (2) and (3), respectively. These results are in agreement
with the selected external data set demonstrating the
model robustness of the model to predict.

Dataset (1). The resulting matrix after the correlation
and CDDA applied in the LJ block for data set (1) is shown
in 3D space in Figure 3. Can be noted a clear definition of
regions accompanying the molecular shape. After applying

Table 1. Basic statistical parameters for regression models. I is the
number of samples (training set or external validation set), i is the
summation index and also the index of the i-th sample (i �= 1, 2,
…, I) ; y : experimental values of y ; yc : calculated values of y for the
training set; yv : calculated values of y from internal validation
(LOO, LNO or y-randomization); yp : predicted values of y for the
external validation set. <y> is the average for experimental values
of y calculated for the training set and not for the external valida-
tion set.[21]

Parameter Definition

Leave-one-out (LOO) and leave-N-out
(LNO) cross-validation correlation coeffi-
cients Q2 ¼ 1�

PI

i¼1

yi�yvið Þ2

PI

i¼1

yi� yh ið Þ2

Correlation coefficient of multiple deter-
mination

R2 ¼ 1�

PI

i

yi�ycið Þ2

PI

i

yi� yh ið Þ2

External validation correlation coefficient

Q2
pred ¼ 1�

P
i

yi�ypið Þ2

P
i

yi� yh ið Þ2

Table 2. Descriptor count reduction along the filtering procedure and the final model descriptor count. FM stands for Final Model.

Data set Initial count Variance cut-off (0.01) j r j cut-off level [a] j r j cut-off CDDA (0.5) FM

(1) 158 400 60 512 0.26 (0.3) 29 047 2 156 6
(2) 162 922 69 518 0.43 14 841 2 825 5
(3) 112 800 38 516 0.14 (0.3) 2 297 277 9

[a] The actual values used are in parenthesis.

Table 3. Figures of merit of the final models obtained for each data set.

Data Set Q2 LOO R2 Qpred
2 SEP NV[a] LV[b]

(1) 0.76 0.79 0.64 1.11 6 2
Depriest et al.[25] 0.66 0.77 – 1.31 – –
(2) 0.96 0.97 0.73 5.49 5 4
Melville et al.[28] 0.78 0.94 0.64 – – 4
(3) 0.59 0.62 0.60 0.88 9 9
Sutherland[23] 0.65 0.76 0.52 – – 7

[a] Number of variables included in the final model. [b] Number of optimum latent variables. In bold characters are important comparison
figures. Not all values are expressed for comparison because not all of them were presented in the original articles.

Figure 3. Grid points left after using correlation and CDDA cutoffs
on the LJ field. One conformation is shown by its van der Walls
volume.
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correlation and CDDA cutoffs on the QQ field, the number
of descriptors was reduced to 1 720. Figure 4 illustrates the
remaining descriptors.

The matrix formed by the joined QQ and LJ fields result-
ed in 2156 descriptors that were ready to be submitted to
variable selection with common computational tools such
as genetic algorithms,[34] feature selection[35] and so forth.
LQTA-QSAR uses OPS[13] as the default variable selection
tool, hence the final models were achieved by means of
this algorithm. The final PLS models have 6 descriptors
(Figure 5) and 2 latent variables. The obtained Q2 LOO
value is 0.77, higher than the literature value (0.68).[25] The
obtained Q2

pred value was 0.68, which can be considered a
fairly reasonable predictive power. The leave-N-out results
in Figure 6 show clearly the robustness of the model. The
LNO validation shows that deviation of Q2 LNO from Q2

LOO stays lower than 0.05 after taking 33 samples out
(39 %). The y-randomizations tests (Figure 7) indicate that
this model it was not obtained by chance.

When the 3D-QSAR study by Depriest et al.[25] was publ-
ised, no crystallographic data regarding any compound
within the enzyme binding pocket were known. Such infor-
mation could be used to generate a better model for data-
set (1). Only in 2003 was a structure of the human angio-
tensin-converting enzyme lisinopril complex published.[36]

The conformations used and the alignment are likely to be
biased by the neglected data. Unfortunately, the literature
lacks a paper presenting such an approach[37] and applying
the new crystallographic data is beyond the scope of this
article.

The usefulness of CDDA was verified by producing a
models without its use. The descriptor matrix submitted

only to correlation cut-off was much larger (29 047 descrip-
tors). After OPS variable selection, interestingly, the final
model also yielded good figures of merit. The model had 8
descriptors and 3 latent variables; the Q2 LOO value ob-
tained was 0.80, a littler higher than the value obtained
using the filter (0.77). The Q2

pred dropped from 0.68 (CDDA)
to 0.63. The model performed well in the y-randomization
test, but the LNO test proved to be much worse (Figure 8).
Even though this model was still capable of doing predic-
tion, it appears that when poorly distributed descriptors
are used, there is a higher possibility of removing samples
that entirely change the descriptor distribution, leading to

Figure 4. Grid points left after using correlation and CDDA cutoffs
on the QQ field. One conformation is shown by its van der Waals
volume.

Figure 5. The best PLS model for data set (1). Negatively correlat-
ed descriptors are depicted in pink and red, and blue color is for
the positively correlated descriptors.

Figure 6. Results of leave-N-out test for data set (1). The values are
the average of 20 rearrangements of the data. The error bars are
two times the standard deviations.
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unpredicted behavior when the model is used for internal
validation. The higher obtained Q2 LOO seems to be prone
to overfiting during variable selection with OPS. Any other
variable selection procedure would be affected by the
same pitfalls.[38]

Dataset (2). No good models were obtained with this
data set using the proposed method. This problem was
overcome when the atomic charges were changed to AM1-
BCC charges.[39] The work of Mittal et al.[40] demonstrates
improvements when the charges are changed for the same
data set.

After the correlation and CDDA filtering procedure, the
QQ field was reduced from 34 759 to 2 348 descriptors.
The LJ field presented only 477 descriptors after filtering.
These two fields were submitted to the already described
variable selection and validation tests. The final model is
surprisingly simple, having only 5 descriptors (Table 2) and

4 latent variables. The Q2 LOO obtained is 0.955 and R2

0.973, and the prediction is also satisfactory (Q2
pred = 0.73).

The model performed well in the validation tests. Detailed
information can be retrieved in the Supporting Information.

The original paper where the CoMFA model is present-
ed,[28] in addition to the single conformation to obtain MIF,
also employed molecular dynamics simulation to explore
the conformational space to produce 4D-QSSR (Quantita-
tive Structure-Selectivity Relationship) and used Boltzmann-
weighting the contribution of selected minimized confor-
mations to produce “3.5D”-QSSR models. In order to avoid
mixing up the concepts of 4D-LQTA-QSAR and approaches
of the original paper only monoconfigurational mol2 files
were retrieved. Concerning model interpretation, little was
discussed about the descriptors obtained, since the mecha-
nism of selectivity of the catalysts was not explored.[41]

Dataset (3). This data set possesses a much smaller
number of descriptors well correlated to y. The final model
has still satisfactory statistics (Q2 LOO of 0.61 and R2 of
0.65). Although the Q2 LOO value from the original article[21]

is somewhat higher (0.65), the model presented in this
work had better performance when used to make predic-
tion (Q2

pred of 0.60 versus 0.52). As mentioned before, when
using current information on targets in the process of
QSAR model building, recent crystallographic information
could be used to produce better models for this data set as
well.

Detailed interpretation of the models obtained is beyond
the scope of this article, but judging by its prediction
power expressed as Q2

pred, the concordance of correlation
and regression vector signs, and their simplicity, it can be
stated that these models are more reliable than the litera-
ture analogues. Some of the results could be improved if
more recent knowledge about mechanism of action and
the receptor structures were used.

When CDDA was not applied to dataset (2) the external
prediction for the blind set was largely compromised (Q2

LOO =�0.16). Interestingly, for dataset (3) not using CDDA
filter did not implicate on detrimental results for the final

Figure 7. Results from y-randomization for data set (1). The intercept values are adequate for the validation procedure, showing that the
model does not suffer from chance correlation.

Figure 8. Results of the leave-N-out test for dataset (1) when the
model is built without CDDA filtering. The values are the average
of 20 rearrangements of the data. The error bars are two times the
standard deviations.
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model’s prediction power or Leave-N-out test (Supporting
Information). After variable selection by OPS, basically the
same descriptors were selected.

5 Conclusions

The descriptors resulting from variance cut-off enabled the
removal of descriptors too far from the molecular surface.
A new way of transforming LJ descriptors was presented.
The proposed transformation allows for maintenance of de-
scriptor variability, unlike the usual cut-off procedure at
30 kcal/mol.

The elimination of non-informative grid points was de-
rived by the determination of a critical correlation cut-off
value. This value aids when deciding whether a descriptor
has a 99 % of chance to be correlated to a random vector.
This approach proves to be very useful to set a specific
level of cut-off based on the biological data available.

Regard the CDDA simplicity, when it is applied to restrain
variable selection for well distributed MIF descriptors, val-
uable results are obtained, mainly regarding the stability of
the models. Correlation analysis and scatterplots to analyze
relations between the descriptors and the dependent varia-
ble are features commonly neglected in the QSAR litera-
ture. Often it is possible to find very poor quality QSAR and
3D-QSAR models being published, which is the reason for a
certain degree of skepticism about the methodology and
its applicability.

Correlation and CDDA cut-offs do not work as variable
selection procedures. They must be understood as a filter-
ing step prior to variable selection. The models obtained
with the filtered pool had good prediction power and the
descriptors were the most informative regions in space.
The 3D-QSAR models obtained are as simple as classical
QSAR models.

There are certain types of descriptors derived from dis-
crete properties of compounds, such as the number of
oxygen and carbon atoms and scaffold positions for a sub-
stituent, among others, that should not be submitted to
CDDA since they can be important and should not be elim-
inated. So it is recommended to use CDDA to filter only in-
trinsically continuous descriptors.

It can happen that y is not well distributed, not having
normal or quasi-normal distribution, hence CDDA is likely
to keep descriptors with the same distribution profile. A
model with this type of y will produce gaps within the re-
sponse model surface and, consequently, predictions falling
inside these regions might not be reliable. One solution for
this problem is finding data to fill these gaps to improve
the distribution of y.

Finally, the MIF descriptor filtering performed by the cor-
relation cut-off and by CDDA proved to be useful tools to
aid in formal variable selection.
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