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The use of nuclear magnetic resonance (NMR) data coupled to chemometric methods has become increasingly
popular in the last decade. However, a serious drawback of these approaches is the commonmisalignments
of 1H NMR spectra. To overcome this problem, bucketing or binning techniques have been used. In this work, an
algorithm is proposed to perform an optimized bucketing that yields better results than the conventional
bucketing implemented in some commercial software. The improvement proposed here for optimized bucketing
deals with the bucket boundaries, which are defined by local minima from average NMR spectrum over all sam-
ples. Applicability of the new algorithm, named OBA (optimized bucketing algorithm), is demonstrated for real
data sets in comparison to other alignment approaches and conventional bucketing.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

NMR spectroscopy is a powerful, versatile, non-destructive, non-
invasive, and reproducible technique. Besides being adequate for
structure elucidation, it can be used to analyze complex samples
without physical separation. These advantages may be explored by
means of suitable chemometric tools to provide several types of
useful information in pattern recognition, adulteration detection,
metabolic profiles, and other fingerprint applications [1–5].

Exploration of the chemical information encoded in all NMR data
suffers from the misalignments that are frequent, especially in 1H
NMR spectra. They arise due to various factors, such as instrumental
instabilities, pH, ionic strength, and temperature, among others, and
they can lead the statistical analysis to incorrect interpretation of
results, because the bi- or multi-linear assumptions of the chemometric
approaches on the nature of the data are not considered properly [6–9].

In the literature, different methods have been proposed to correct
these misalignments. One popular approach of low computational cost
is called binning or bucketing [6]. Alternatively, more elaboratedmethods
such as correlation optimized warping (COW) [10–14], dynamic time
warping (DTW) [10,12], correlation-shifting (coshift) [15], and interval-
correlation-shifting (icoshift) [7,15] have also been employed. Bucketing
is theoretically simpler than the other cited methods.

Actually, bucketing performs a data reduction by grouping spec-
tral responses, not being strictly a method to align data. In the con-
ventional method, the spectra are divided into evenly spaced windows,
named bins or buckets, whose width commonly ranges between 0.01
: +55 19 3521 3023.
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and 0.05 ppm. The intensities inside each bin are summed, so that
the area under each spectral region is used instead of individual
intensities. Therefore, a new smaller set of variables (each one is
the result of the sum of intensities) is created and, as the width of the
buckets is set to cover the chemical shift variability around the peaks,
the misalignment tends to be overcome [6,16,17].

Eq. (1) summarizes the bucketing procedure applied to a data ma-
trix X(I,J) with samples in rows, variables in columns and elements xij,
where i=1, 2, …, I and j=1, 2, …, J. For each sample i, xij is an inten-
sity in the raw signal at point j. The N parameter is the number of data
points in each bucket and can be calculated by the ratio between the
bucket width and the sampling interval (e.g., if the bucket width is
0.05 ppm and the sampling interval is 0.0005 ppm, the N parameter
will be equal to 0.05/0.0005=100 points). The sampling interval
changes between different experiments because it depends on how
the acquisition of the Free Induction Decay (FID) is performed, that is,
on the parameters set in the NMR experiment, such as, acquisition
time, total digitalized data points and spectral width. The K parameter
is the final number of buckets and equal to the integer part of the
ratio J/N. Therefore, according to Eq. (1), the new variable domain axis
k is created where new intensities zik are organized in a new matrix
Z(I,K).

zik ¼
XN�k

j¼N� k−1ð Þþ1

xij k ¼ 1;2;…;K ð1Þ

A drawback for this method is that some areas from the same res-
onance signal can appear in two or more bins, splitting the chemical
information in question. This occurs because conventional bucketing
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Fig. 1. Scheme of the conventional and optimized bucketing procedures. (a) Simulated NMR spectra with misalignments. (b) Average simulated spectrum and the bucket boundaries
(vertical lines) delimited by conventional bucketing, with buckets of size 0.01 ppm. (c) Bucket values from each sample shown through a bar plot obtained by conventional bucketing.
(d) Average simulated spectrum and the bucket boundaries (vertical lines) delimited by OBA, with initial buckets of size 0.01 ppm and slackness of 50%. (e) Bucket values from each
sample shown through a bar plot obtained by OBA. In (c) and (e) the bars' height are related to the value of the integrals that were normalized to a total sum equal to one.
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uses rigid boundaries. Despite this, several papers in the literature
[1,2,18,19] effectively use this methodology.

Fig. 1a shows a set of simulated misaligned NMR spectra. Fig. 1b
and c illustrates the conventional bucketing procedure. As can be
seen in Fig. 1b, which presents the average simulated spectrum with
the bucket boundaries denoted by vertical lines, the bucketing with
0.01 ppm width (Fig. 1b) is unable to properly isolate the signals. As
result, in Fig. 1c, where the buckets' values for each sample are shown
through the colored bars (the bar heights are related to the values of
the integrals that were normalized to the total sum equal to one),
five important variables are observed, containing the principal infor-
mation on the data set, which actually has three signals. Hence, this
could seriously hamper interpretations, for example, when principal
component analysis (PCA) is used.

The drawback cited above can be overcome by having the bin
boundaries adjustable tominima, in order to provide optimized buckets
of different sizes. In fact, a similar type of solution has already been
proposed in the literature, as for example, the methodology for bin-
ning implemented in the commercial software ACD/Labs™ (Toronto,
Canada) named intelligent bucketing [16,17]. In this method, the soft-
ware chooses integral divisions based on local minima, thus searching
for a better way of slicing up the spectra and avoiding the problem of
the conventional bucketing. However, the software is not open source
and the method for finding minima has not been reported. In other
work, Davis et al. [20] proposed a methodology named adaptive bin-
ning, where undecimated wavelet transform is used for denoising and
to find all minima in a reference spectrum (maximum over each sam-
ple) performing the integration between theseminima for each individ-
ual spectrum. However, in the decomposition a predefinition of both
wavelet level and basis functions is necessary. Thus, there is a depen-
dence on the number of levels in the decomposition, besides the thresh-
old for denoising. Other alternatives for the traditional bucketing have
been proposed in the recent literature, named Gaussian binning [21]
and dynamic adaptive binning [22], but as the method proposed by
Daves et al., these methodologies require a higher level of user exper-
tise, being more complex than the algorithm presented here.

The aimof thiswork is to present a bucketingmethod that optimizes
bucket sizes by setting their boundaries at the local minima determined
through the average NMR spectrum and is designated as “optimized
bucketing algorithm” (OBA). The proposed approach is simple, accessi-
ble to any user as an in-house routine built in Matlab code, and is avail-
able for free download at http://lqta.iqm.unicamp.br.

2. Methodology

2.1. The “optimized bucketing algorithm”

The optimized bucketing algorithm (OBA) that is being proposed is
a modification of the conventional bucketing procedure. In order to de-
fine buckets with variable size, but common to all samples, the average
spectrumxT is used, where T superscript represents the transpose oper-
ation and each element xj is the mean of j-th column of X. First, two
parameters are defined: 1) the initial bucket width in ppm, which is
converted into the number of points N by the algorithm, using the sam-
pling interval calculated from the ppm axis, requested as input and
2) the slackness, which is given as percentage of N and defines how
far the boundary can move while searching for the local minima in
the average spectrum. The slackness is converted in the algorithm into
the parameter s, expressed as slackness∗0.01∗N. Therefore, using as
inputs initial bucket widths of 0.04 ppm, for example, in a data set
with sampling intervals of 0.0004 ppm (N=0.04/0.0004=100 points)
and slackness of 50% (s=50∗0.01∗100=50 points), the bucket sizes
could range from 0.02 to 0.06 ppm (100±50 points), depending
where the local minimum is found. The outputs are the pretreated
matrix with dimensions (I,K), the optimized boundaries and the
resulting size of each bucket, both in ppm.
From the mathematical point of view, OBA can be reasoned as fol-
lows: Once the bucket width and the slackness are known, the vector
vT (Eq. (2)), whose elements define the bucket boundaries, is created.
The first bucket starts in variable j=1 and the last bucket ends at
variable j= J from the mean spectrum x and these are the first and
last elements of vector vT. The other elements of vector vT are, in
fact, the index q of the q-th element from xq which corresponds to the
local minimum in the region delimited by xN�t−s and xN�tþs, where t=
1, 2,…, T, with T being equal to the integer part of (J/N)−1, as defined
in Eq. (3).

vT ¼ 1; ⋯; q; ⋯; J½ � ð2Þ

xq ¼ min xN�t−s : xN�tþs

� � ð3Þ

The elements from vT replace the integration limits in Eq. (1), thus
providing the optimized bucketing, for each sample i, as shown in
Eq. (4), where v(k) is the k-th element from vector v. The new matrix
Z(I,K) is obtained where the new intensities zik are organized and the
new variable domain axis k is created.

zik ¼
Xv kþ1ð Þ

j¼v kð Þ
xij k ¼ 1; 2; …;K ¼ length vð Þ−1 ð4Þ

Fig. 1d and e show a scheme for OBAwhen applied to themisaligned
spectra. The number of buckets K is the same as before (Fig. 1c), but it
is clear from Fig. 1d that the new algorithm was able to set the bound-
aries at the local minima (vertical lines). On both sides of the central
peak, thebuckets becomenarrowbecause in the search for localminima,
the boundaries, initially set at non-optimized positions, tend to move
close to the region between the peaks. As the result, in Fig. 1e, where
the bucket values for each sample are shown through the colored bars,
only three important buckets are observed, as expected, since the simu-
lated data has only three peaks. The superior performance of the pro-
posed methodology over the conventional bucketing procedure is easily
visible.

An important issue to be considered in OBA is the choice of the best
combination between the bucket width and the slackness for each data
set. Visual inspection on themisalignment extents at the baseline could
be of great help in defining these parameters. Also, some criterion, as for
example, the variance explained in first principal components from a
principal component analysis (PCA) or the simplicity value [11] of the
bucketed matrices could give a reasonable estimate of the two input
combinations. The simplicity value is related to how well a data set is
aligned and this parameter could be used to evaluate the results from
a given bucket width and slackness in an optimized bucketing proce-
dure. Finally, it is advisable not to use very large bucket widths, because
this approach has an inherent decrease of resolution at the chemical
shift axis, thus there must be a compromise between the gain from
correctingmisalignments and the reduction in the number of variables.
For the data sets used in this work, the input parameters have been
determined by inspecting the baseline misalignments and the plots of
the obtained buckets, in order to choose those with lower decrease in
resolution.

Aiming to test the applicability of OBA and to compare it with
other methods from literature, three NMR data sets were selected
and they are described below. Two of these data sets were extracted
from the literature (wine and brain tumor data) and one was ac-
quired in our lab (biodiesel–diesel data).

2.2. Wine data

Wine 1H NMR spectra have been studied by Larsen et al. [14],
where the methodology for data acquisition has been described. The
data matrix X(40x8712), downloaded from http://www.models.kvl.

http://lqta.iqm.unicamp.br
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dk, is composed of 40 table wine samples (distributed in white, red
and rosé) covering the region from 0.50 to 6.00 ppm, and the lactic
acid content (one important organic acid for the taste profile of the
wine [14]) from each sample. In this region, one can observe several
peaks attributed to ethanol, organic acids, carbohydrates and, in smaller
quantities, polyphenols, other aromatic compounds and colorants. All
these peaks present misalignments that occur mainly due to the differ-
ences in the sample pH, which were not adjusted before the analysis.
OBA was applied to the NMR spectra using 0.05 ppm as the initial
width of the buckets and slackness of 50%. For this data set the sampling
intervalwas about 0.00063 ppm leading toN=0.05/0.00063=79points
and s=50∗0.01∗79=39 points (these parameters were rounded). As a
result, the matrix of buckets Zwith dimensions (40×109) was obtained.
Buckets with 0.05 ppm were used for the conventional bucketing pro-
cedure and in this case the Z matrix has dimensions (40×110). Since
the lactic acid content was available, pretreated (by conventional and
optimized bucketing) and raw data, using the entire spectra and a se-
lected region, were used to build partial least squares (PLS) and multi-
ple linear regression (MLR) models on mean centered data matrices. All
the models had their predictive performance evaluated by the leave-
one-out cross-validation approach where the coefficient of determina-
tion (R2) was calculated. For construction of the models, in-house rou-
tines built inMatlab codewere used (TheMathWorks, Natick, MA, USA).

2.3. Biodiesel–diesel data

One hundred samples of biodiesel–diesel blends collected in gas
stations in the state of São Paulo were supplied by the Analytical Cen-
ter of the Institute of Chemistry, University of Campinas. The samples
were classified as metropolitan (the city of São Paulo and metropoli-
tan region of Campinas) and non-metropolitan (other smaller cities
of the state), according to their regions of commercialization. The
NMR analysis was carried out on a Bruker Avance DRX400 spectrom-
eter 400.13 MHz to 1H at room temperature, using 550 μL of neat bio-
diesel samples in a 5 mmBruker BBOprobeheadwithout spinningusing
the standard 90° pulse sequence for 1H. Homogeneity of the field was
obtained by inspections of the spectrum of the standard lineshape sam-
ple (0.3% chloroform in acetone d6). This field conditionwas used for all
samples during all days of the analyses. All spectra were acquired with
32 K points in the time domain, 20 ppm (1H) and 16 scans. FIDs were
processed with TOPSPIN 2.1 with 64 K points, multiplied by an expo-
nential window function with line broadening constant of 0.3 Hz (1H)
and normal Fourier transformation. The phase of the final spectra was
adjusted one by one by direct inspection; the baseline was made using
an automatic linear function. All the spectrawere referenced using a dig-
ital lock field position obtained using TMS in acetone at 0 ppm. The 1H
NMR spectra were organized in a data matrix X with dimensions
(100×15,850) relative to the region from 0.02 to 10.00 ppm, which
was reduced into buckets by the conventional way, using buckets with
widths of 0.05 ppm and OBA with slackness of 50% (sampling inter-
val=0.00063 ppm, N=79 points, s=39 points), followed by normali-
zation to unit area. The bucketing procedures provided Z matrices
with dimensions (100×200) and (100×199) for the conventional and
optimized ones, respectively. The rawdata and the bucketed normalized
matrices were mean centered and submitted to exploratory analysis
by principal component analysis (PCA) using the software Pirouette
3.11 (Infometrix, Seattle, WA, USA).

2.4. Brain tumor data

The 1H NMR spectra from human brain tumor extracts have been
studied by Faria et al. [23] where the methodology for data acquisi-
tion has been described. From the 1H NMR spectra reported, 16 and
13 spectra corresponding to non-neuroglial (NN) and high-grade neu-
roglial (Hg) tumors, respectively, were selected for the present study.
The spectra corresponding to the region between 1.22 and 4.25 ppm
were organized in a data matrix X with dimensions (29×4964). OBA
was applied to the NMR spectra using 0.002 ppm as the width of
buckets and slackness of 50%. For this data set the sampling interval
was about 0.00060 ppm leading to N=0.002/0.00060=3 points and
s=50∗0.01∗3=2points (these parameterswere rounded). As a result,
a matrix Z of buckets with dimensions (29×1416), was obtained. Par-
tial least squares discriminant analyses (PLS-DA) with the leave-one-
out cross-validation approach were used to build classification models
(two types of tumors, NN and Hg) from the raw data set and the data
set after pretreatment with OBA using a y-vector of classes where the
value 1 was set to NN tumors and the value −1 was set to Hg tumors.
The analyses were carried out on mean centered matrices. The perfor-
mance of the PLS-DA model of each data set was evaluated through
the number of misclassifications (NMC) as diagnostic statistics and re-
lated to the diagnostic statistics obtained from 10,000 permutation
tests computed using the permuted vector of classes (y-randomiza-
tion). The NMC values were calculated as the sum of false positives
and false negatives in the models, obtained by relating the predicted
class labels to a discriminative threshold defined using estimated distri-
butions for the predicted values in each class. The threshold is selected
at the point where the two estimated distributions are equal, these dis-
tributions being approximately normal (Gaussian distributionswith the
mean and the standard deviation of all the predictions for each class).
For the models from the permutations a null hypothesis H0 assumes
that there is no difference between the groups. Thus, the statistical sig-
nificance of the number of misclassifications of the models is assessed
by comparing them to values of their null hypothesis distributions H0

[24,25]. From these comparisons each p-value (one plus the number
of elements in the null distribution that are smaller or equal to the
NMC for the unpermutedmodel divided by the number of permutation
tests, in this case, 10,000) was calculated [24] and associated to the
significance threshold α=0.05. Additional details about this perfor-
mance evaluation may be found elsewhere [24,25]. All analyses were
performedusing in-house routines built inMatlab code (TheMathWorks,
Natick, MA, USA).

3. Results and discussion

3.1. Case study: wine data

In the wine data set a broad range of peak shifts is observed strongly
dependent on the sample pH. This can be seen in Fig. 2 in theNMR spec-
tra for all samples, in the zoomed regions related to the signals from
ethanol (quartet—methylene group) and lactic acid (doublet— terminal
methyl group). The alignment of these spectra using correlation opti-
mized warping (COW) [14] and icoshift [15] approaches, has already
been reported in the literature, besides the results for PLS regression
models.

Table 1 summarizes the PLS regression results (on mean-centered
data) for lactic acid content using the raw data and pretreated data by
conventional and optimized bucketing. For comparison, the results
from icoshift [15] and COW [14] aligned matrices are also included.
The MLR models for bucketed regions associated with chemical shifts
in the region of 1.35 and 1.45 ppm corresponding to two buckets
(#92 and #93 from conventional bucketing and #91 and #92 from
optimized bucketing) are also shown in this table. The two buckets in
each situation present little correlation (correlation coefficients 0.1363
and −0.0649 from the conventional and optimized bucketing, respec-
tively), thus there is no redundancy in the MLR models.

Based on the R2 values, the worst results were those relative to the
whole spectral range (smallest R2 values). Possibly, the non-linearity
introduced by the misalignments imposes to PLS model, the use of a
higher number of factors (four latent variables) to capture the corre-
lation between the spectral data and the lactic acid content.Moreover, it
can be seen that the PLSmodels built after the COW and icoshift correc-
tion areworse than the ones for the rawdata, leading to a lower value of

http://www.models.kvl.dk
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Fig. 2. NMR spectra for wine samples and the zoomed regions related to the signals from ethanol (quartet — methylene group) and lactic acid (doublet — terminal methyl group).
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R2, with the same number of latent variables, which suggests that these
corrections were ineffective to solve the misalignments associated to
the signals of the lactic acid. Indeed, in the original publication [14]
relative to the COW procedure, the authors used an additional tool
based on multistep interval procedure utilizing coshift, for improving
the regression model of the lactic acid (second line for COW in
Table 1), since the COW method was only able to correct for the
shift of the dominant ethanol peaks. Also, in the original publication
[15] about icoshift alignment, the authors improved the lactic acid
regression model (second line for icoshift in Table 1) using custom
intervals, defined through the prior knowledge of the NMR peak as-
signments. Thus, both COW and icoshift did not work well for the
minor constituent lactic acid, requiring further optimizations.

The bucketing procedures presented superior performance for
the PLS regression models, when the whole spectral range was used
(Table 1), without the necessity of subsequent manipulations. The con-
ventional bucketing pretreatment provided a PLS regressionmodel with
Table 1
Results from PLS regression and MLR models for lactic acid content (reference values,
mean=1.03 g L−1 and standard deviation 0.51 g L−1).

Pretreatment Spectral region (ppm) #LVa RMSECVb (g L−1) R2c

None (raw data) 0.5–6.0 4 0.369 0.48
1.35–1.45 3 0.113 0.95
1.35–1.45 2 0.136 0.93

icoshiftd 0.5–6.0 4 0.400 0.39
1.35–1.45 2 0.104 0.96

COWe 0.5–6.0 4 0.440 0.27
1.3–1.6 3 0.100 0.96

Conventional bucketing 0.5–6.0 (bucketed) 4 0.310 0.63
1.35–1.45 (bucketed)f,g – 0.114 0.95

Optimized bucketing 0.5–6.0 (bucketed) 4 0.200 0.84
1.35–1.45 (bucketed)f,h – 0.124 0.94

Parameters are based on leave-one-out cross-validation.
a #LV=number of latent variables.
b RMSECV=root mean squared error of cross validation.
c R2=coefficient of determination.
d From reference [15].
e From reference [14].
f MLR models.
g Buckets #92 and #93 (from 1.4608 to 1.4110 ppm=bucket #92 and from 1.4110

to 1.3611 ppm=bucket #93).
h Buckets #91 and #92 (from 1.4804 to 1.4261 ppm=bucket #91 and from 1.4261

to 1.3573 ppm=bucket #92).
4 latent variables, R2=0.63 and RMSECV=0.310 g L−1 (Table 1), while
the optimized bucketing pretreatment reached R2=0.84 with the same
number of factors (4 LV) and with a lower error in the cross-validation
(RMSECV=0.200 g L−1). To avoid overfitting, thenumber of latent var-
iables was chosen by observing the plots of RMSECV versus the number
of factors, as shown in Fig. 3. As can be seen in this figure, for example, in
the curve relative to PLS models after OBA, the models with more than
five latent variables are overfitted. The better results from the opti-
mized bucketing for the whole spectra may be associated to the ad-
vantage of this methodology to concentrate the signals in a few
buckets, avoiding peak splitting. Indeed, the conventional bucketing is
also able to allocate the signals in a few buckets, but in this case peak
splitting is not completely avoided. The results suggest that for this
data set the bucketing procedures are advantageous, considering the
serious misalignments of the lactic acid signals.

Using only the signal from terminal methyl of lactic acid, the
icoshift method illustrated the best PLS model with 2 LVs (RMSECV=
0.104 g L−1 and R2=0.96), while the PLS model obtained after the
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correction provided by the COW approach yielded a regression model
with similar statistics (RMSECV=0.100 g L−1 and R2=0.96), but was
more complex with 3 LVs. The MLR models obtained from each
bucketing procedure showed similar performance to that one obtained
from the icoshift procedure. This fact constitutes a great advantage for
the bucketing approaches, because the MLR models are unbiased and
simpler than PLSmodels and they do not require the optimization of la-
tent variable numbers.

TheMLRmodel achieved after the use of the conventional bucketing
pretreatment (RMSECV=0.114 g L−1 and R2=0.95) was slightly
better than the one obtained after OBA (RMSECV=0.124 g L−1 and
R2=0.94), but they are still comparable, as verified by an F test on the
predicted lactic acid contents obtained in the leave-one-out cross vali-
dation procedure for both MLR models, at the α=0.05 significance
level with the number of degrees of freedom of numerator and denom-
inator equal to 39 (p-value=0.9926). Also, a t test was performed on
the means of the predicted lactic acid contents determined by the two
MLR models, where it was found that the means were not significantly
different at the α=0.05 significance level (p-value=1.00).

For the specific region studied, the signals from the ethanol 13C
satellites can be found (between 1.30 and 1.35 ppm) very close to
the lactic acid peaks, which, in part, may have hampered the search
for local minima and consequently affected the regression models.
Actually, the two buckets (Table 1) used for both MLR models (after
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ences between the values in the y-axis occur because the bucketed spectra are normalized
conventional and optimized bucketing) do not cover exactly the same
region. Considering this problem, one possible solution is to modify
the parameters in the OBA (slackness and initial bucket width), but
this was not performed in the present work. Despite this, OBA proposed
herein worked very well for obtaining the lactic acid content from the
wine NMR spectra.
3.2. Case study: biodiesel–diesel data

Fig. 4 shows the comparison between conventional and optimized
bucketing applied to the 1H NMR spectra of the 100 biodiesel–diesel
blends. It is possible to notice in Fig. 4b and c the superior perfor-
mance of OBA for solving the alignment problem (see the enlarged
regions). The proton signals in the saturated chains in biodiesel and die-
sel hydrocarbons tend to suffer more peak shifts due to their greater
conformational freedom, which is strongly temperature-dependent
and which leads to the misalignments seen in Fig. 4a. A simple align-
ment of the spectra according to the reference signal cannot correct
for such shifts.

The blends are divided into two classes according to the location
where the biodiesel were commercialized, as metropolitan and non-
metropolitan. Fig. 5a, b, and c compare the clustering obtained through
PCA (PC1 versus PC2) for themean centered spectra before the bucketing
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Bucketed 1H NMR spectra by (b) conventional and (c) optimized bucketing. The differ-
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Fig. 5. PCA score plots obtained for: (a) raw data matrix; (b) data matrix after conven-
tional bucketing; and (c) data matrix after optimized bucketing. The explained vari-
ances are shown inside parentheses in each PC.
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pretreatment and after using the conventional and optimized bucketing
approaches, respectively.

The analysis of the loading plots (data not shown) relative to
scores plots presented in Fig. 5a, b, and c indicated that the distribu-
tion of the samples is determined by the two largest peaks, between
0.7 and 1.4 ppm, which are precisely those relative to the protons in
hydrocarbonswith saturated chainsmore affected by themisalignment
issue. In Fig. 5a, one can see that PC1 captures the difference between
the two kinds of samples (metropolitan and non-metropolitan), while
PC2 basically captures the misalignment and the information about
two samples labeled as D and E with more negative score values. The
clustering in Fig. 5a is similar to that obtained after the conventional
bucketing (Fig. 5b) and is very different from that one obtained when
using the optimized bucketing pretreatment (Fig. 5c), because in
Fig. 5b, the peak alignments are still not fully achieved, as can be seen
in the enlarged region from Fig. 4b.

From a prior knowledge obtained by standard chemical analysis in
the field of biofuels (not shown), for this data set, all labeled samples
(A, B, C, D, E, F, G, H and I) are anomalous (outliers) blends, that is,
they are out of specifications. Therefore, as can be seen in Fig. 5a and b,
the variance associated to the misalignment (captured in PC2), in this
case, seriously hampers the identification of the outliers, not being inter-
esting from the viewpoint of exploratory analysis. Otherwise, it is clear
in Fig. 5c that the outliers are evidenced from their own groups (metro-
politan and non-metropolitan samples) with extreme score values,
making easier the identification and interpretation. After the misalign-
ments are corrected by OBA, the clustering obtained (Fig. 5c) describes
95.1% of the total variance along PC1, practically all variance contained
in three components referring to the clustering without any bucketing
(Fig. 5a— PC1 74.6%, PC2 15.1% and PC3 5.7%) and 2.6% of the total var-
iance along PC2. In this example, the unnecessary complexity of the
spectral profiles, provided by themisalignmentswas properly corrected.

Besides the analysis described above, PCA was performed for the
intervals from 6.4 to 8.5 ppm and from 0.4 to 1.4 ppm, independently.
The first interval corresponds to the regions with signals related to aro-
matic protons that differ from those in hydrocarbons and suffer less
with themisalignment (there is a conformational hindrance for the pro-
tons in aromatic rings). In fact, the three clusters obtained for themean
centered data before and after applying both bucketing pretreatments
were almost identical. For the second interval (larger peaks), the obser-
vations were very similar to those cited above for the whole spectral
range (data not shown).

OBA also allowed a data reduction in each 1H NMR spectrum from
32,768 frequency domain points to 191 buckets. This fact can be im-
portant from the computational viewpoint, since the reduced number
of variables can decrease computational time. However, the data re-
duction is accompanied by a possible decrease in spectral resolution,
which may lead to loss of information, especially when subtle differ-
ences are expressed by the samples and high resolution is required.
Other solutions for the alignment, such as dynamic time warping
(DTW), correlation optimized warping (COW), and the icoshift method
may be used without a decrease in spectral resolution. Nevertheless,
these alternatives are theoretically less simple than the bucketing ap-
proach and commonly involve expensive computational operations
and user expertise. Finally, it is noteworthy that OBA provides flexibility
of the definition of the input parameters, which may be adjusted in
order to avoid serious loss of spectral resolution.

3.3. Case study: brain tumor data

Fig. 6a and b present the NMR spectra for the two classes of brain
tumors, non-neuroglial (NN) and high-grade neuroglial (Hg). Fig. 6a
shows the raw data, where it is possible to visualize the small extent
of misalignments through the enlarged region. By contrast, Fig. 6b
shows the corrected NMR spectra after the pretreatment by OBA,
which resulted in a bucketed matrix Z with dimensions (29×1416).
The small initial bucket width of 0.002 ppm was successful to over-
come the misalignments, as can be observed in the enlarged region
from Fig. 6b, showing that the peaks in this region become sharper.

At this point, it is worth to cite the correspondence problem usual
for complex regions in 1H NMR spectra, where owing to inhomoge-
neous magnetic field or incomplete phase correction, the peak shapes
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may be distorted from the ideal symmetrical shape, and besides that, the
peak positions can change due to temperature, pH, and ionic strength,
even leading to an inversion in the order of the signals [26]. OBA pro-
posed here does not deal with these issues and relies that for the data
set, extreme correspondence problems are not present. Indeed, this is
an inherent weak point for all bucketing procedures, being addressed
by some works in literature [27,28] proposing alternatives, such as, the
use of the generalized fuzzy Hough transform (GFHT) in order to estab-
lish the objectively true correspondence. Despite this, the bucketing is
still widely used because no method has proven to be sufficiently easy
to use and sufficiently successful in producing good results [26]. For the
brain tumor data set the correspondence problem does not exist, which
was properly observed through a heat map created after sorting the
data using the creatine signal as reference.

In order to show the advantages of OBA, PLS-DA models were built
to assess the discrimination of the two kinds of tumors. The number
of latent variables used in each model was defined by choosing the
one with the smallest number of misclassifications (NMC), avoiding
overfitting in a similar way to that presented in the first case study
(Fig. 3). Therefore, based on this diagnostic statistic, 2 latent variables
were determined in the optimization of the PLS-DA model relative to
the mean centered pretreated (bucketed) data set, where the model
reached four misclassifications between the kinds of tumors. For the
PLS-DA model using the mean centered raw data set, 4 latent variables
with fivemisclassifications were selected. Bothmodels were significant
at a level α=0.05 in the permutation tests. Fig. 7a and b show the dis-
tribution of 10,000 permutation tests for NMC of the PLS-DA models
from the raw and pretreated data sets. From Fig. 7, it is clear that the
number of permutations (10,000) used was enough to sample the
tails of the distributions, resulting in distributions with Gaussian
shapes. The PLS-DA model for the pretreated data set reached a
p-value=0.0032 against the p-value=0.0005 for the PLS-DA model
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relative to the raw data set. A p-value smaller than the significance
threshold α=0.05 indicates that the null hypothesis H0 (no difference
between the two classes of tumors) may be rejected and, at this level of
significance, differences between the classes are observed. For the two
models, the classifications were significant, however, the PLS-DA
model built using the bucketed data set was more parsimonious in de-
termining the latent variable subspace that enables discrimination, be-
sides achieving an improvement in NMC. Moreover, by analyzing the
regression vector (data not shown) obtained for this model and the
raw data, the regions more discriminants between the two types of tu-
mors, as pointed out by the literature [23], becamemore evident owing
to the reduction in the complexity of the data set provided by OBA,
which may be important in the context of the search for biomarkers.

Finally, besides the superiority shown due to the “alignment” provid-
ed by OBA, there is the advantage of the reduction in the number of vari-
ables, which may be quite important from a computational viewpoint,
especially when dealing with large data sets. This example showed the
great applicability of the new algorithm and its flexibility in solving is-
sues in a complex data set.
4. Conclusions

It has been shown that OBA has superior performance compared
to conventional bucketing, widely used in the literature. For the
wine data set, the results demonstrated that the optimized bucketing
strategy can be useful for building less complex models (MLRmodels)
with good predictive abilities, even comparable to PLSmodels obtained
when sophisticated alignment methods are used. For the biodiesel–
diesel blend data set, the good performance of OBA in the explorato-
ry analysis was shown, which can be of great significance for pattern
recognition purposes. The main point resides in the improvement of
the explained variance by theprincipal componentswith consequent in-
crease in interpretabilities. In this example, OBA provided good results,
even in a data set with a large number of misalignments. In the brain
tumor data set, OBA allowed obtaining significant PLS-DA models for
discrimination of the tumors with a lower number of misclassifications
by correcting a small number of misalignments, especially important to
themore discriminatory signals. The proposed algorithm in this paper is
easy to use, where the users just need to know about the extent of the
misalignments at the baseline to set a suitable initial width of buckets
and slackness. This point is very important, because thebucketingmeth-
odology has an inherent decrease of resolution, which can beminimized
by the use of suitable input parameters. In our applications a slackness of
50% has been suitable, but it is not possible to generalize this parameter,
since different data sets may require different values. The algorithm
consists of an in-house Matlab routine available for free download at
http://lqta.iqm.unicamp.br.
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