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Near infrared (NIR) spectroscopy was used to determine the content of Klason lignin, acid-soluble lignin,
total lignin, extractives, ash, acid-insoluble residue, glucose, xylose, rhamnose, galactose, arabinose,
mannose and total sugars in coconut residues. The samples were analyzed at several processing stages:
wet unground (WU), dried unground (DU) and dried and sieved (DS). Partial least squares models were
built, and the models for the analytes exhibited R240.80, with the exceptions of rhamnose, arabinose,
galactose, mannose and ash from all fractions, and the lignin content from the WU fraction, which were
predicted poorly (R2o0.70). There were some significant differences between the models for the main
lignocellulosic components at the various stages of biomass. These results proved that NIR spectroscopy
is useful for analysis at biorefineries, and it can be used as a faster and more economical alternative to the
standard methods.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Brazil generates a substantial amount of lignocellulose agri-
cultural waste [1], which includes coconut biomass. Coconut
(Cocos nucifera L.) is grown in approximately 93 countries [2], with
a world production of 60.7 million tons in an area of 11.8 million
hectares [3]. Brazil is ranked fourth in the world in coconut pro-
duction, producing 2.8 million tons of coconuts in an area of 287
thousand hectares [4].

However, coconut production is an important contributor to
the nation's pollution problems because 80–85% of the coconut's
raw weight is treated as solid waste residue in the form of husks
[5], resulting in an annual production of approximately 2.3 million
tons of coconut husks in the country.

Coconut husk is the mesocarp, composed of coir fibers [6]. The
world production of coir fibers ranges between 5 and 6 million tons
per year. However, less than 10% of coir fiber is commercialized [7],
and most of the husks are abandoned in nature, wasting natural
resources and causing environmental pollution [8].

Coconut husk is attractive because of its high proportions of
well-defined polymeric structures of cellulose (35.00–47.00%),
hemicellulose (15.00–28.00%) and lignin (16.00–45.00%); its low
amounts of ash (2.70–10.00%); and, depending on the coconut
variety, its high extractives content, ranging from 3.40% to 30.00%
erreira).
[9–13]. Efforts have been made to enhance the value of this resi-
due as a precursor for biorefinery technologies. As a result, coco-
nut husks have been considered a renewable resource in lig-
nocellulosic biorefining for the production of biofuels [13,14],
polymer composites [6,8,15], adsorbents [7] and chemicals [2].

The yields of these processes depend on the chemical compo-
sition of the coconut samples [16]. The biomass composition can be
determined by traditional methods [17], although they are fre-
quently time-consuming and expensive. Therefore, accurate and
robust methods of analysis are of great value, particularly if inte-
grated online in a biorefinery. In this context, NIR spectroscopy is
fast, simple to apply, and non-destructive, so it is a suitable alter-
native to the existing reference methods. However, the applications
of NIR spectroscopy are almost entirely dependent on chemometric
tools. Partial least squares regression (PLS) can be directly applied to
the NIR spectra, resulting in calibration models to predict the
properties of interest [18].

Studies using NIR spectroscopy, coupled with chemometric
tools, have shown the utility of NIR spectroscopy for the char-
acterization of different biomasses. However, these models were
developed for samples that have undergone extensive biomass
preparation, including cutting, drying, comminution, sieving and
removing extractives. As a result, significant amounts of time and
money are spent on these analyses [16].

In this study, NIR spectra and chemometric methods were
applied to minimally processed (wet unground (WU) and dried
unground (DU)) coconut samples, as well as to dried and sieved
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Table 1
Descriptive statistics for the chemical constituents (%) of 28 samples of coconut husks.

Statistic parameters/constituentsa Median value Minimum value Maximum value Mean value Standard deviation Coefficient of variation

TL 25.130 17.001 35.807 24.802 4.305 17.305
KL 23.830 16.003 34.504 23.405 4.034 17.204
ASL 1.370 0.702 2.102 1.421 0.407 28.207
AIR 24.178 16.252 34.955 24.002 4.066 17.005
Extrac 20.175 1.404 41.601 20.467 11.451 55.708
Ash 1.070 0.336 3.099 1.404 0.969 68.601
Glu 25.005 17.642 32.406 24.938 3.233 12.964
Xyl 11.220 6.400 16.516 11.464 0.536 4.676
Arab 2.390 1.828 4.302 3.043 0.606 19.702
Gal 1.041 0.591 1.669 1.054 0.581 55.167
Rha 0.293 0.281 0.515 0.389 0.060 15.800
Man 0.505 0.362 2.033 0.752 0.403 53.001
TS 40.614 28.797 50.998 40.825 3.868 9.476

a TL: total lignin; KL: Klason lignin; ASL: acid-soluble lignin; AIR: acid-insoluble residue; Extrac: extractives; Glu: glucose; Xyl: xylose; Arab: arabinose; Gal: galactose;
Rha: rhamnose; Man: manose; TS: total sugars.
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(DS) biomasses, in order to determine their chemical compositions
with respect to extractives (Extrac), ash, acid-soluble lignin (ASL),
Klason lignin (KL), acid-insoluble residue (AIR), total lignin (TL),
glucose (Glu), xylose (Xyl), galactose (Gal), mannose (Man), arabi-
nose (Arab), rhamnose (Rha) and total sugars (TS). The quality of the
final models was evaluated by determining the figures of merit.
2. Material and methods

2.1. Samples

Twenty-eight samples of coconut residues were analyzed with
respect to the DS fraction, and 26 samples were analyzed with
respect to the DU and WU fractions. All of the samples were col-
lected during the period of 2010–2012 in Brazil; most of them
originated from the North and Northeast regions, whereas the
others came from the Southeast. Approximately 500 g of each
biomass was collected during different processing stages (WU and
DU). The WU and DU fractions were initially separated and stored
in a freezer.

An additional 500 g of each biomass was cut into small pieces
(20 mm sieve aperture), dried at 105 °C (until they reached a
constant weight), ground using a Romer micro mill (Romer Labs,
São Paulo, Brazil) and sieved for 20 min (180–850 μm). This bio-
mass fraction was designated as DS (dried and sieved), and it was
the fraction used for the reference analysis.

2.2. Reference analyses of biomasses

The reference analyses were carried out using standard NREL
methods [19,20]. The moisture level was determined as the loss of
mass after drying at 105 °C in an oven overnight, and the ash
content was determined as the residue after the combustion of a
sample with known dry-matter content. The muffle furnace Naber
therm L-240H1SN was used at a temperature of 575 °C for 4 h.

Each fraction of the sample was then extracted with 95%
ethanol using accelerated solvent extraction in a Dionex ASE 200
system (Thermo Fisher Scientific, Waltham, MA, USA), and these
extractive-free materials were used for subsequent analyses. The
extracted samples were then subjected to a two-stage acid
hydrolysis, with 72% sulfuric acid (3 mL) in a water bath in the first
step, followed by hydrolysis in an autoclave for 1 h at 120 °C with
an acid concentration of 4%.

The ASL extract consisted of low-molecular-weight lignin
solubilized in the acidic hydrolysis solution. The ASL concentration
was measured in the diluted hydrolyzate (with a low-
concentration acid solution) by UV spectroscopy in a Shimadzu
UV-1700 spectrometer (Shimadzu, Kyoto, Japan) measuring the
absorbance at 240 nm. The AIR, i.e., the dried solid residues (at
105 °C overnight) after the acid hydrolysis, was ashed to determine
the acid-insoluble ash (AIA). The difference between the AIR and
AIA levels gave the KL content. Finally, the TL content was calcu-
lated as the sum of the soluble and insoluble lignin during the acid
hydrolysis, ASL and KL, respectively.

Structural carbohydrates were hydrolyzed into monomeric
sugars, releasing monosaccharides into the acid hydrolysis solution
(arabinose (Arab), galactose (Gal), rhamnose (Rham), glucose (Glu),
xylose (Xyl) and mannose (Man)). They were quantified by high-
performance anion-exchange chromatography with pulsed ampero-
metric detection (HPAEC-PAD) using an ED 40 electrochemical
detector, along with a CarboPac-PA 10 column and precolumn.
Standard monomeric sugar solutions were hydrolyzed concurrently
during the secondary hydrolysis step, and this degradation was used
to account for the loss of carbohydrates during the acid hydrolysis.

All of the analyses were performed in duplicate, with a stan-
dard deviation between duplicates of less than 1% for all para-
meters. All of the results were presented as percentages (%).

2.3. Visible–near infrared spectroscopy

A FOSS XDS instrument (FOSS, Hillerød, Denmark), equipped
with the associated rapid content analyzer (RCA) module and a
diffuse reflectance detector, was utilized to record the near-infra-
red spectra. The spectra (1100–2500 nm) were obtained in 0.5 nm
increments and were generated by averaging 32 successive scans.
WU and DU samples were scanned in a large rectangular cell
because of their heterogeneous particles and larger particle sizes,
and the DS samples were scanned in a small circular cell because
of their small particle sizes. Each sample was analyzed in triplicate,
and the average spectrum was used for further data treatment.
One small circular cell with a ceramic standard as reference
material was used over the scanning window to register the blank
spectrum.

2.4. Multivariate data analysis

Statistical and multivariate data analyses were conducted using
the UNSCRAMBLER 10.3 software package (Camo Software, Oslo,
Norway), and one PLS routine from the PLS-toolbox 6.7 was used to
calculate the figures of merit (Eigenvector Research, Wenatchee, WA,
USA) for Matlab 7.2 software (MathWorks, South Natick, MA, USA).

PLS-1 (one dependent variable) was used for constituent quan-
tification [21]. The original data set was randomly divided into two
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sub-sets, one used for calibration (consisting of 20 samples) and the
other used for external validation (consisting of the remaining
samples). The number of latent variables (LV) in the calibration
models was determined based on the minimum root-means-square
error of cross-validation (RMSECV) [22].

Several pre-processing methods were tested, and the best
results were obtained by combining the standard normal variate
(SNV) with first (1D)/second (2D) derivative transformations
[23,24] and by combining the SNV with Detrend (DT) [23]. In
addition, the second derivative pretreatment method was indivi-
dually used [24]. Variables were selected through an automatic
uncertainty test (Martens' uncertainty test), to select the most
significant variables in the models [25].

The performance of each model was evaluated based on the
external validation data set and the calibration data set by calcu-
lating the coefficients of determination (R2ext and R2cal, respectively);
the standard error of calibration (SEC); the standard error of pre-
diction (SEP); bias; the relative standard deviation (RSD%¼
SEPn100/mean), where the mean was taken from the reference
values in the validation set; the number of LVs used; the fraction of
outliers excluded, identified by analyzing the plot of leverage
versus Student residuals [22]; and the range error ratio (RER¼
Rangey of validation data/SEP) [26,27]. The last parameter (RER)
provides good results when the RER value is Z4 and very good
results for research quantification when RERZ15 [26].

To provide reliable multivariate calibration models, the figures of
merit were also calculated [28]. For that, the net analyte signal (NAS)
was used, according Bro and Andersen [29]. The analytical sensi-
tivity (γ), its inverse (γ�1), the limit of detection (LOD) and the limit
of quantification (LOQ) were calculated using the instrumental noise
(δx) estimated from the standard deviation in each wavelength from
15 blank spectra pretreated according to each specific PLS model.
Then, the sensitivity (SEN) and the selectivity (SEL) were calculated
based on the NAS [18]. The accuracy was expressed as the SEC and
the SEP. The linearity was graphically depicted by the plots of resi-
duals and by the plot of the reference versus the predicted values.
Additionally, the standard deviations (SEC, SEP, SECV) were statis-
tically compared by the F-test.

Finally, the regression coefficient vector was interpreted for
each constituent [30].
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Fig. 1. NIR raw spectra for all coconut samples of (A) the DS fraction, (B) the DU
fraction and (C) the WU fraction.
3. Results and discussion

The statistical results regarding the chemical constituents are
summarized in Table 1. The highest range was observed for ash
and extractives (Extrac), with a wide variation in the coefficient of
variation (68.60 and 55.70, respectively), followed by the sugars
mannose (Man) and galactose (Gal). The most important sugar,
glucose (Glu), and the total sugars (TS) presented a small range of
variation, with low coefficients of variation (12.96 and 9.47,
respectively). All of the lignins showed intermediate variations
between 17.00 and 28.20. This wide compositional variability for
some parameters was obtained because highly heterogeneous
populations, such as samples from different regions, soils, years,
cultivars and species were sampled.

The NIR raw spectra of the 28 coconut samples from the DS
fraction (Fig. 1A), and the 25 samples from the DU (Fig. 1B) and
WU (Fig. 1C) fractions, are shown in Fig. 1.

The main absorption bands are located at 1450/1470 nm,
2090 nm, and 1920 nm, and weak bands appear as shoulders at
1170/1270 nm and 2274/2336 nm. These bands were mainly rela-
ted to the O–H stretch from water (1920 nm), the O–H combina-
tion from polysaccharides (2090 nm), and the O–H stretch and the
1st overtone of the OH groups with H-bonds of intermediate
strength (1450–1470 nm) [31,32]. The less intense bands (1170/
1270 nm) are associated with the C–H stretch 2nd overtone from
lignin, and the bands at 2274/2336 nm are assigned to the O–H
stretch/C–H stretch and/or the C–O stretch combination/C–H
deform combination of the polysaccharides [31]. The clear



Table 2
Parameters and statistics for validation of the best PLS models obtained for lignin and extractive contents.

Y Sample set Pre-treatment Samples of calibration sets Samples of prediction sets LV Out. Inl. R2 Pred RM SE Pred RSD RER

Cal CV Cal CV

TL DSn 2D(15)þSNV 20 7 3 – 1 0.86 0.78 0.83 1.593 2.019 1.740 7.00 6.0
DUn SNVþ1D(3) 19 4 3 1 1 0.86 0.79 0.79 1.499 1.946 1.600 4.2 4.0
WU – – – – – – – – – – – – – –

KL DSn 2D(15)þSNV 19 7 7 1 1 0.98 0.83 0.86 0.491 1.724a 1.291b 5.50 6.0
DUn SNVþ1D(3) 20 4 4 – – 0.91 0.77 0.87 1.019 1.784 1.089 5.00 5.7
WU – – – – – – – – – – – – – –

ASL DSn 2D(15) 20 7 6 – 1 0.95 0.73 0.83 0.085 0.212 0.106 6.40 10.0
DUn SNVþ1D(3) 20 5 3 – – 0.89 0.82 0.88 0.131 0.175 0.166 11.6 4.0
WU – – – – – – – – – – – – – –

AIR DSn 2D(15)þSNV 20 7 5 – 1 0.95 0.87 0.77 0.882a,b 1.510a 1.844b 8.50 5.5
DUn SNVþ1D(3) 19 5 5 1 – 0.86 0.80 0.88 1.377 1.764 1.193 5.2 4.70
WU – – – – – – – – – – – – – –

Extrac DSn 2D(15)þSNV 18 7 6 2 1 0.99 0.92 0.90 0.607a,b 2.979a 3.019b 14.0 11.0
DU SNVþDT 19 4 4 1 1 0.89 0.84 0.88 3.540 4.647 3.717 13.5 6.0
WUn 2D(15) 18 5 7 2 – 0.92 0.75 0.90 3.115a 6.081a 3.414 15.0 8.8

n Variable selection; LV: latent variables; Out: outliers removed from the calibration set; Inl: outliers removed from the validation set.
a Significantly different calibration and cross validation set errors.
b Significantly different calibration and external validation set errors.

Table 3
Parameters and statistics for validation of the best PLS models obtained for sugar composition.

Y Sample set Pre-treatment Samples of calibration sets Samples of prediction sets LV Out. Inl. R2 Pred RM SE Pred RSD RER

Cal CV Cal CV

Glu DSn SNVþ1D(3) 19 6 4 1 2 0.90 0.83 0.83 1.075b 1.508 1.770b 6.7 7.0
DUn SNVþDT 19 4 3 1 1 0.88 0.84 0.87 1.332 1.646 1.486 6.0 5.0
WUn 2D (25) 18 5 4 2 – 0.92 0.83 0.78 1.059a,b 1.619a 2.332b 10.0 4.0

Xyl DSn SNVþ1D(3) 19 7 3 1 1 0.89 0.78 0.80 0.954a 1.444a 1.252 10.0 10.0
DU SNVþDT 20 5 3 – – 0.82 0.74 0.78 1.280 1.621 1.333 11.6 5.4
WUn – – – – – – – – – – – – – –

TS DSn SNVþ1D(3) 19 7 5 1 1 0.91 0.80 0.79 1.922a,b 2.934a 3.541b 8.0 5.5
DUn SNVþDT 19 5 4 1 – 0.92 0.86 0.91 1.954 2.738 2.077 4.6 12.0
WUn 2D(25) 19 5 4 1 – 0.85 0.71 0.78 2.544a,b 3.918a 3.829b 9.0 5.4

n Variable selection; LV: latent variables; Out: outliers removed from the calibration set; Inl: outliers removed from the validation set.
a Significantly different calibration and cross validation set errors.
b Significantly different calibration and external validation set errors.
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differences among the spectra from different fractions (Fig. 1A–C)
occur in the regions of approximately 1450/1470 nm (associated
with the first overtone of the symmetric vibration of OH) and
1920 nm (associated with the OH stretch), mainly related to water
[32,33], where the WU fraction presented more intense bands.
3.1. Partial least-square regression modeling

Unique PLS models were built for different fractions of the
samples and for different analytes, which are summarized in
Table 2, and for individual monosaccharides, as well as the total
sugar content (Table 3). The NIR spectra were analyzed in the
region between 1100 and 2500 nm with variable selection.
The NIR spectra presented non-linear baseline deviations due
to multiplicative light scattering caused by the non-homogeneous
particle size distribution. The deviations were more intense for
the unground samples from the WU fraction (Fig. 1C). These
instrumental deviations are not related to the chemical composi-
tion and can be removed by preprocessing methods. In this work,
the most common preprocessing techniques used for the spectra
were the second or first derivative [24] and SNV combined with
Detrend [34] or derivatives [23].

In most of the cases, larger amounts of variability unrelated to the
analyte were removed when applying two pretreatments for cor-
recting the spectral data, such as SNV followed by derivatives, or
otherwise. The SNV and derivatives remove different types of effects,
and there might well be some improvement in the models when



30

35

40

45

50

18

21

24

27

30

33

30

35

40

45

50

55

30 35 40 45 50 18 21 24 27 30 33

30 35 40 45 50 55 20 25 30
20

25

30

Pr
ed

ic
te

d 
TS

, D
U

 (%
)

Reference TS, DU (%)

Pr
ed

ic
te

d 
G

lu
co

se
, D

U
 (%

)

Reference Glucose, DU (%)

P
re

di
ct

ed
 T

S
, W

U
(%

)

Reference TS, WU (%)

Pr
ed

ic
te

d 
G

lu
co

se
, W

U
 (%

)

Reference Glucose, WU (%)

 Calibration ( )       External validation 

Fig. 2. Plot of reference versus predicted values from the calibration and external validation models from the DU and WU fractions for (A) the total sugar content with 4 VL;
(B) the glucose content with 3 VL; (C) the total sugar content with 4 VL; (D) the glucose content with 4 VL.

30

35

40

45

50

18

21

24

27

30

33

6

8

10

12

14

16

30 35 40 45 50 18 21 24 27 30 33

6 8 10 12 14 16 5 10 15 20 25 30 35

5

10

15

20

25

30

35

P
re

di
ct

ed
 T

S
, D

S
 (%

)

Reference TS, DS (%)

P
re

di
ct

ed
 G

lu
co

se
, D

S
 (%

)

Reference Glucose, DS (%)

P
re

di
ct

ed
 X

yl
os

e 
D

S
(%

)

Reference Xylose, DS (%)

P
re

di
ct

ed
 E

xt
ra

ct
iv

es
, D

S
 (%

)

Reference Extractives, DS(%)

 Calibration ( )       External validation  

Fig. 3. Plot of reference versus predicted values from the calibration and external validation models from the DS fractions for (A) the total sugar content with 5 VL; (B) the
glucose content with 4 VL; (C) the xylose content with 3 VL; (D) the extractives content with 6 VL.

M.K.D. Rambo et al. / Talanta 138 (2015) 263–272 267



-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

TS

1446
20

90

17
24 19
20

23
29

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t u

ni
t

Wavelength (nm)
1200 1400 1600 1800 2000 2200 2400

1200 1400 1600 1800 2000 2200 2400

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Glu

1410-1610

2329

19
20

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
 u

ni
t

Wavelength (nm)

Fig. 4. Plot of reference versus predicted values from the calibration and external
validation models from DU and DS fractions for (A) the total lignin content with
3 VL; (B) the acid lignin soluble content with 3 VL; (C) the total lignin content with
3 VL; (D) the acid lignin soluble content with 3 VL.

M.K.D. Rambo et al. / Talanta 138 (2015) 263–272268
applying both pretreatments. What matters most in such cases is the
order inwhich the pretreatments are applied [23]. Except for ASL, the
best models for all the analytes from the DS fraction were obtained
when using one of the combinations mentioned above. Improve-
ments were shown for lignins and extractives when the derivatives
method was applied first, whereas sugar models provided better
results when SNV pretreatment was applied first. When SNV is
applied after the derivative, more variability is removed, i.e., more
irrelevant information in the spectra is removed. However, applying
SNV before taking the derivatives (1D or 2D) removes multiplicative
effects. Thus, this combination removes both multiplicative effects
and sloping baselines [23].

Detrend is a baseline correction technique that utilizes poly-
nomials and can be used to remove nonlinear trends and reduce
multicollinearity, baseline shift and curvature [34], such as those
found in the spectra from DU fractions. The procedure is generally
used in conjunction with pretreatment SNV [35] because the data
corrected by SNV may still be affected by baseline curvature.
However, the DU fraction also shows favorable models for lignins
using combined pretreatments such as SNVþfirst derivative.

Regarding all the models for the WU fraction, the relative errors
when using SNV were significantly higher than those observed
when the second derivative was applied. Apparently some
important spectral information in WU spectra is removed when
scatter correction techniques are applied, and the derivatives
appear to be a better alternative.

For lignins (TL, KL, ASL and AIR) and extractives (Table 2), all of
the PLS models, independent from the fraction, can be considered
parsimonious, with an LVo7 for most models. Low relative errors
were obtained for lignins, in the range of 4.2–11.6, whereas higher
values of RSD for extractives (413%) were obtained. The RER was
Z10.00 for ASL (in the DS fraction) and extractives (in the DS
fraction), indicating that very good models were obtained at the
level of quality control. All of the other models, with RERZ4.0,
were qualified for screening calibration [25]. The lignin models for
the WU, DU and DS fractions presented significant differences; in
general, the heterogeneity of the samples influenced the perfor-
mances of the models, with better results obtained for the models
from the DS fractions.

The presented models for the lignins (Table 2) were similar to
and, in most cases, better than the previously reported models in
the literature for other biomasses [16,18,36–39]. The studies that
reported higher values of R2cal,pred [16,38] were modeled with an
excessive number of factors (Z10). In addition, compared with the
studies cited above that used the same number of factors as in the
present paper (3–7 VLs), the RER and R2 values of the cited studies
were always lower than those reported in this work.

The extractives (Table 2) were determined by accelerated sol-
vent extraction, and this method was chosen to increase the
extraction speed and efficiency as it requires lower volumes of
solvent than Soxhlet methods. Despite being a complex mixture
with a high degree of superposition of absorption bands from the
many compounds found in the extractives [18,40], very good
models were obtained for the extractives, with RERZ6, R2cal,val
Z0.89 and 0.88. Suchat et al. [40] developed calibration models
for acetone extracts and obtained a similar R2cal,val of 0.96 and 0.96,
respectively, for homogeneous samples, but without reporting the
number of LVs in the model. Hayes [16] obtained R2cal40.91 for
95% ethanol-soluble extractives content but with high numbers of
factors 13, 15 and 17 LVs for the DU, DS and WU fractions,
respectively, compared with 4, 6, and 7 LVs (for the DU, DS and
WU fractions, respectively) in this study.

The ash calibration models are not acceptable for screening
calibration or for routine quality control because all of the RER
values obtained were lower than 4.00, and the RSD values were
higher than 30.00%. Some authors [39] obtained good results for
ash, with few LVs.

With respect to the sugar content, the RSD for the major con-
stituents, glucose, xylose and total sugars (TS), were less than
10.0%, 11.6% and 9.0%, respectively, showing that the models have
good predictability regardless of the fraction used. The perfor-
mances of the models presented in this work (Table 3) are similar
to those previously reported in the literature for other biomasses
[16,41,42].

Arabinose and galactose, monosaccharides with intermediate
concentrations in coconut husks, were not well-modeled inde-
pendent of the fraction, WU, DU or DS. The coefficients of deter-
mination R2cal, val were below 0.70, and the models were not reli-
able (data not shown in Table 3). Compared with the major sugars,
the predicted results for the minority sugars, mannose and
rhamnose from the fractions DS, DU and WU were also relatively
poor, and the results are not reported in Table 3. This poor model
performance is most likely due to the smaller percentages of these
sugars by weight, resulting in less intense signals that could be
masked by others. Another factor that can justify the worse fitting
is the fact that small proportions result in low concentrations in
the hydrolyzate, so the measurement by chromatography might
not be as accurate as for glucose and xylose, for example [43].
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Fig. 2 presents the plots of the reference vs. the predicted
values from the sugar calibration models (total sugar and glucose)
and the external validation for both unground samples, wet (WU)
and dried (DU).

Fig. 3 shows the plots (calibrations and external validation) of
the reference vs. the predicted values from the sugar calibration
(total sugar, glucose and xylose) and extractives models for the
sieved and dried samples (DS). Comparing the three fractions, DS,
DU andWU, in Figs. 2 and 3, the DS and the DU fractions presented
models with lower RSD and higher RER values in most of the cases,
and a lower number of LV and outliers were detected for the sugar
models.

The regression coefficients of the reference and the predicted
values for the lignins (total lignin and acid-soluble lignin) models
from the dried fractions (DU and DS) are shown in Fig. 4.

The external validation sets were used to check the predict-
ability of the models. They were of different sizes, and the number
of samples for each analyte is listed in the third column of Table 4.
The extractive models had the most deviations, whereas the sugar
models (Glu and TS) presented the least deviations (Table 4).
Although the number of samples is not large, all of the models
obtained can be considered reliable for screening calibration and,
in some cases, for quality control.

3.2. Regression coefficients interpretation

Examining the regression coefficients for the lignin models (TL, KL
and AIR), from the unground (DU) as well as the ground samples (DS)
sets, it can be observed that the regression coefficients are quite
similar and present signals that can be assigned to the lignin struc-
tures. Fig. 5 shows the regression vectors for KL and ASL, both from
the DS fraction, which displays the third overtone of the Aryl C–H
stretch at 1114–1122 nm, C–H stretching in the aromatic structure at
1672 nm [44], and the lignin combination bands in the region of
2150–2460 nm. The significant bands at 1900 nm and 1940 nm are
assigned to water. The significant bands at 1920 nm and 2090 nm
Table 4
Predicted and reference values and corresponding relative residues for some PLS mode

y Fraction Sample number Pred. value Ref. value Rel. res.

TS WU 1 34.516 31.7957 �8.556
2 46.560 47.3694 1.707
3 44.042 37.8538 16.348
4 50.994 48.851 �4.385
5 28.797 33.5288 14.113

ASL DU 1 1.06 1.09 3.13
2 1.65 1.73 4.42
3 1.31 1.48 11.29
4 0.96 1.11 13.50
5 1.43 1.70 15.72

– – –

Extrac WU 1 30.300 24.6116 23.112
2 27.760 32.5689 14.765
3 11.330 11.3087 �0.188
4 18.410 18.3169 �0.508
5 8.760 11.0151 20.473
– – – –

Gluc DS 1 20.500 21.0011 2.385
2 32.406 28.9720 11.854
3 22.410 23.8003 5.840
4 30.026 30.0156 �0.037
5 30.611 29.4722 �3.864
6 25.787 23.7575 �8.545
confirm the contribution of polysaccharides (which have a negative
correlation with the lignin content) to the insoluble lignins [32,33].
This contribution can indicate the presence of sugars that have not
been fully hydrolyzed in the insoluble residue of the lignins. The ASL
also shows a polysaccharide contribution at 1430 nmwith a negative
correlation (assigned to the O–H stretch, which is the 1st overtone of
amorphous polysaccharides). Additionally, one band at 1672 nm
assigned to lignin (C–H stretch of 1st overtone) with negative corre-
lation was found. Because these regression coefficients were obtained
from the second derivative spectra, the negative coefficients corre-
spond to a direct relationship.

Other differences observed in the correlation coefficients from
ASL occur at 1114–1122 nm with poor bands compared with the
other lignins and in the second overtone of the carboxyl and ester
stretching (1943 nm). None of the lignin fractions, with the
exception of the ASL (i.e., the TL, KL and AIR fractions), presented
this band at 1943 nm, indicating that lignin, in general, was not
correlated with carboxyl groups. However, the positive correlation
(i.e., the negative regression coefficient) of the signal at 1943 nm
with the ASL fraction can be attributed to the inability of the ASL
determination method to differentiate ASL from other acid-soluble
compounds that also absorb in the UV region, such as uronic acids
(which present carboxyl groups), furfural, and possibly the acid
degradation products of the extractives that may not have been
fully removed in the extraction step [45]. These possibilities can
indicate a possible overestimation of the ASL content by the
reference method. Nevertheless, good calibration models were
obtained for ASL. A typical lignin band was found at 1724 nm (the
1st overtone of the C–H stretch,) for the ASL coefficient.

The regression coefficients from the PLS models for the total
sugars and the glucose from the DU fraction (Fig. 6) show typical
carbohydrate bands. The absorption at 1724 nm was attributed to
the 1st overtone of the C–H stretching in hemicellulosic sugars [45].
The band at 1920 nm was attributed to the O–H stretch from poly-
saccharides, and it overlapped with H2O [32]. The combination
bands at 2090 and 2329 nm were attributed to polysaccharides. A
ls.

Fraction Sample number Pred. value Ref. value Rel. res.

DU 1 44.042 41.970 �4.903
2 34.074 32.558 �4.656
3 46.875 45.728 �2.508
4 31.771 29.964 �6.028
5 49.935 47.321 �5.524

DS 1 1.431 1.58303 9.667
2 1.082 0.89629 �20.496
3 1.151 0.89093 �29.078
4 1.820 1.65498 �9.971
5 1.068 0.91996 �16.091
6 1.655 1.38404 �19.215
7 1.9660 1.61256 �21.921

DU 1 18.41 22.1429 16.858
2 33.54 37.4737 10.497
3 7.69 12.7107 39.500
4 36.61 37.4200 2.165
– – – –

– – – –

DU 1 27.2102 25.1961 �7.994
2 22.4103 20.5293 �9.162
3 27.813 28.8821 3.702
4 20.5003 20.1852 �1.561
–

–
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negative band at 1446 nm was assigned to the phenolic hydroxyl
groups, most likely of lignins [46], which demonstrated an inverse
relationship of the TS with the lignin content. However, for the
glucose coefficient regression (Fig. 6B), one broad band at 1410–
1610 nm was attributed to the O–H stretch, specifically the 1st
overtone of alcoholic/sugar structures. Other sugars most likely
presented a negative correlation with glucose. Here, the presented
coefficients were obtained from a SNVþDT pretreatment, thus
positive coefficients corresponded to a direct relationship.

The signals that were correlated to the extractive contents
(data not shown) were assigned to waxes RCO2R (1938 nm), pro-
teins, and/or polyalcohols CONH2R (2056 nm), which are typical
components present in extractives [47]. The second overtone of
the carboxylic acid (RCO2H) stretching vibration (1910 nm) is
negatively correlated with the extractives, which most likely
results from the long-chain fatty acids insoluble in ethanol, whose
content is negatively correlated with the ethanol-soluble fraction.

The first overtone of the alkyl region's stretching (1625–
1775 nm) and combination bands (2200–2450 nm) are complex,
presenting positive and negative regression coefficients. This
complex structure of the PLS model, indicated by the regression
coefficient features and the high number of LVs, is due to the
multicomponent mixture character of the extractives fraction.

3.3. Analytical validation by figures of merit

Table 5 summarizes the parameters estimated for evaluating the
main figures of merit of the developed models.
The linearity of the method was evaluated by examining the
residuals of the PLS models (data not shown), checking for the
absence of systematic trends in the distribution of residuals and
suggesting their random behavior. Additionally, the points should be
linearly distributed around a diagonal line in the plots (Figs. 2–4).

The SEL provides an estimate of the amount of instrumental
signal that was used by the calibration model for determining the
analyte. The models showed SEL varying from 0.53 to 0.006 (55.00–
0.60%) (Table 5), i.e., less than 0.006 of the original signal was
orthogonal to the space of the interferents, carrying less than 1.00%
of the analyte information modeled. However, this behavior occured
for a single model (galactose from the WU fraction). The other
models showed higher SEL, above 4.00%.

The SEN value is not appropriate for comparing models
because it depends on the pretreatment applied and the ana-
lyzed matrix. Lower values of sensitivity, on the order of 10�5,
were obtained for models that employed derivatives, mainly 2D,
as observed for the models of the sugars (glucose and total
sugars for WU fractions) and the extractives (WU). Moreover,
models using SNV in combination with other pretreatments
such as derivatives or Detrend, as in the models for lignins,
among others, showed high sensitivity values. This is because
the derivative spectrum has very small intensities, requiring
large regression coefficients for conversion to the analyte con-
centration [18]. Consequently, the increase in the regression
coefficients results in decreased sensitivity [48].
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Table 5
Results of the obtained figures of merit for the PLS models.

y Sample set SEL SEN γ γ�1 LOD LOQ

TL DS 0.483 51.387 413.24 0.002 0.007 0.024
DU 0.476 0.113 41.524 0.0241 0.072 0.240

KL DS 0.006 2.087 87.233 0.011 0.034 0.114
DU 0.208 0.104 455.517 0.0022 0.006 0.022

ASL DS 0.129 355.99 7.225�104 1.383�10�5 4.151�10�5 1.383�10�4

DU 0.536 1.627 4.099�103 2.439�10�4 7.318�10�4 0.002
AIR DS 0.324 31.996 71.620 0.014 0.041 0.139

DU 0.033 0.044 5.692 0.175 0.527 1.756
Extractives DS 0.036 6.275 220.127 0.004 0.013 0.045

DU 0.093 21.660 653.479 0.0015 0.005 0.015
WU 0.011 8.459�10�5 29.638 0.033 0.101 0.337

Glu DS 0.075 0.058 880.383 0.001 0.003 0.011
DU 0.061 30.806 251.522 0.004 0.011 0.039
WU 0.277 5.648�10�5 23.558 0.042 0.127 0.424

Xyl DS 0.092 0.019 72.306 0.013 0.041 0.138
DU 0.270 12.843 165.737 0.006 0.018 0.060

TS DS 0.116 0.007 29.771 0.033 0.100 0.336
DU 0.202 3.839 74.899 0.013 0.040 0.133
WU 0.105 1.542�10�5 45.430 0.022 0.066 0.220
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The inverse of the analytical sensitivity (γ�1), with values all
smaller than 0.17%, provides an estimation of the minimum con-
centration difference that is discernible by the analytical method.

The minimal observed values were all larger than the LOQ, with a
maximum value of 1.76. The results for the LOD indicated that the
NIR–PLS method was able to detect concentrations in the coconut
husks samples for all of the models once the minimal observed
values for all of the parameters were larger than the LOQ.
4. Conclusions

This study demonstrated that it was possible to predict the major
lignocellulosic constituents (TS, glucose and TL) of coconut husks
samples based on their dried spectra. The wet spectra provided
reasonable results for sugar models but not for lignins. The inter-
mediate and minor constituents such as sugars (arabinose, rham-
nose, galactose and mannose) and ash cannot be used for screening
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or quantitative predictions. In general, small differences among the
models from different biomass stages were observed, with the DS
fraction showing slightly better results for the extractives and the
DU fraction showing better results for lignins, whereas for sugar
models, no significant differences were observed between the frac-
tions. However, considering that sample preparation, as in DS frac-
tion, requires extensive time and labor, the multivariate analysis
techniques applied to the NIR wet and dried spectra (WU and DU)
with minimally processed samples have demonstrated the potential
for on-line use because good RER values were obtained, appropriate
for screening calibrations for all models and, in some cases, suitable
for research quantification.
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