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Márcia M.C. Ferreira,1 and Anita J. Marsaioli1

Abstract

Excessive body fat and obesity have adverse health effects and result in significant morbidity such as type 2
diabetes mellitus. The health burden of obesity can be reduced with the Roux-en-Y gastric bypass (RYGB)
weight-loss bariatric surgery. Little is known on the molecular changes that occur at the metabolome level
before and after bariatric surgery, with a view to clinical biomarker development. Hence, we employed a
metabolomics approach in 10 obese diabetic patients who underwent bariatric surgery. Metabolomics data were
obtained by T2- and diffusion-edited hydrogen nuclear magnetic resonance (1H NMR) spectra to monitor the
metabolic and lipoprotein profiles, and gas chromatography-mass spectrometry (CG-MS) to access the fatty
acid profile before and 12 months after RYGB. Using hierarchical partial least squares discriminant analysis, we
found that RYGB induces several key metabolic alterations associated with glucose homeostasis, as well as
fatty acid and amino acid metabolism. The levels of lactate (Krebs’ intermediate cycle) decreased after RYGB.
The leucine, isoleucine, valine, lactate, and glucose levels were higher in the samples before RYGB ( p < 0.05).
Additionally, the levels of very low-density lipoprotein, unsaturated lipids, and N-acetyl-glycoprotein were
higher before RYGB. By contrast, levels of the high-density lipoprotein and phosphatidylcholine were higher
after bariatric surgery. These results collectively offer important holistic integrative biology data to develop
future clinically relevant metabolomics biomarkers related to bariatric surgery in connection with obesity.

Introduction

Obesity is characterized by excessive body fat with
adverse health effects, resulting in co-morbidities, in-

cluding type 2 diabetes mellitus (T2DM). Recently, Roux-en-
Y gastric bypass (RYGB) weight-loss surgery has emerged as
an effective and safe treatment for obesity and T2DM, with
successful results in 50%–80% of cases (Buchwald et al.,
2009). A retrospective study of approximately 10,000 indi-
viduals who underwent gastric bypass surgery revealed that
mortality related to diabetes decreased by over 90% (Adams
et al., 2007). The diabetes remissions occurred within days,
which is relatively rapid and could not be fully explained by
weight loss (Morinigo et al., 2006). Weight loss induced by
RYGB leads to improvement in insulin resistance and pan-
creatic b-cell function by mechanisms that are weight loss-
dependent and -independent (Geloneze et al., 2001). The
effects of RYGB on T2DM remission have been associated
with enhanced levels of the incretin hormones glucagon-
like peptide 1 and glucose-dependent insulinotropic peptide;

however, the exact mechanism is unclear (Catalan et al.,
2007). RYGB also results in significant metabolic changes,
such as better hormonal responses, decreasing levels of in-
flammatory markers, and lipid metabolism alteration (Cata-
lan et al., 2007; Lima et al., 2010).

Long-term studies of RYGB are challenging because
they depend on many interconnected variables, including
caloric restriction, reduced adipose mass, diminished nu-
trient absorption, gut hormone and endogenous microbiota
alteration, and metabolic adaptations (Friedrich et al.
2012; Laferrère et al., 2011; Lindqvist et al., 2013, Mutch
et al., 2009). Several studies have demonstrated that the
target metabolomics approach, using gas chromatography/
mass spectrometry (GC-MS) and tandem mass spectrome-
try, successfully generate new data regarding the meta-
bolic modifications associated with RYGB (Khoo et al.,
2013; Laferrère et al., 2011; Lindqvist et al., 2013, Mutch
et al., 2009). To the best of our knowledge, the applica-
tion of NMR to RYGB metabolite profiling has not been
mentioned.
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Metabolomics comprises the quantitative assessment of
‘‘all metabolites’’ (small molecules) within a biological
system. This approach has been applied successfully to sev-
eral research topics, such as environmental and biological
systems and clinical and condition diagnosis (Lindon et al.,
2003). Mass spectrometry and NMR are the two main ana-
lytical platforms employed in metabolomics research; how-
ever, both have different strengths and weaknesses (Ludwig
et al., 2010; Patti et al., 2012). NMR-based metabolomics has
a number of unique advantages because it is nondestructive
and nonbiased, does not require separations or chemical de-
rivatization, and allows the identification of novel com-
pounds (Lindon et al., 2003; Wishart, 2008).

Hydrogen nuclear magnetic resonance (1H NMR) spectra
of blood plasma are marked by broad signals from macro-
molecules, such as proteins and lipoproteins (Ala-Korpela
et al., 2007), which are frequently physically removed or
suppressed by spin-echo sequences in metabolomics studies
(Tiziani et al., 2008). Several studies have employed diffusion-
edited 1H NMR spectra to access lipoprotein profiles without
sample pretreatment or separation of the lipoproteins (Ala-
Korpela et al., 1994; Dyrby et al., 2005; Otvos et al., 1992;
Petersen et al., 2005). 1H NMR is a spectroscopic technique
widely used in metabolomics, able to analyze biofluids and
biological tissues with minimal sample preparation (Lindon
et al., 2003). 1H NMR is also able to detect polar and nonpolar
metabolites with high or low molar mass. The technique
provides a rapid, nondestructive, and highly reproducible
analysis (Lindon et al., 2008). The main disadvantages of 1H
NMR is the cost of the equipment and its maintenance. The
FA profile has been routinely monitored by GC-MS, the
approach shows high detectability, repeatability, good linear
correlation, and also identification of the analytes, a huge
advantage when compared to more traditionally methods as
GC-FID (Rodriguez et al., 2010).

Metabolomics investigations frequently employ multivar-
iate analysis, but, in some cases, the large variable ensem-
ble produces ‘‘megavariate’’ data. Traditional multivariate
analysis provides plots and lists of loadings, weights, and
coefficients that tend to blur and hamper the overall analysis.
To solve such issues, the two main options are: selection
of hierarchical variables to reduce the dataset or partition of
the variables into blocks, and the application of hierarchical
data analysis (Eriksson et al., 2002). Employment of hierar-
chical partial least square discriminant analysis (HiPLS-DA)
can extract in-depth metabolic information from the RYGB
procedure by an untargeted metabolomics approach, using
three different data subsets: i) T2- and ii) diffusion-edited 1H
NMR spectra to monitor the metabolic and lipoprotein pro-
file, and iii) GC-MS to access the fatty acid (FA) profile.

Material and Methods

Chemicals

The deuterium oxide (D2O 99.9%) was from the Cam-
bridge Isotope Laboratory; the 2,2,3,3-d4-3-(trimethylsilyl)
propionic acid (TMSP) was from Acros Organics (Brazil,
São Paulo); the monobasic potassium phosphate (KH2PO4)
and dibasic potassium phosphate (K2HPO4) were obtained
from Merck (Brazil, São Paulo). A Supelco 37-component
FA methyl esters mix was acquired from Sigma-Aldrich
(Brazil, São Paulo), and the nonadecanoic acid (C19:0), oleic

(C18:1), linoleic (C18:2n6), and a-linolenic (C18:2n3) me-
thyl esters were purchased from Acros.

Patients

Ten obese diabetic individuals (BMI = 32.38 – 2.11 kg.m - 2)
underwent RYGB surgery. The blood samples were collected
after overnight fasting before and 12 months after surgery.
The protocol was approved by the Institutional Review Board
and the Brazilian Health Regulatory Agency. The data were
collected according to the Good Clinical Practice Guidelines
of the Declaration of Helsinki, and informed consent was
obtained from all individuals.

Plasma collection and storage

Blood samples were collected from ten patients in Na2EDTA
(1.0 mg$mL - 1). The plasma samples were obtained by cen-
trifugation at 800 g for 15 min, and the aliquots were trans-
ferred to polypropylene tubes and stored at –80�C until
assayed.

Clinical parameters

The high-density lipoprotein (HDL) cholesterol and tri-
glyceride (TG) levels were determined by enzymatic meth-
ods. The low-density lipoprotein (LDL) cholesterol level was
calculated using the Friedewald method. The plasma glucose
was measured by the glucose oxidase technique (Beckman
Glucose Analyzers; Beckman, Fullerton, CA).

Sample preparation for NMR analysis

The plasma (400 lL) was mixed with phosphate buffer
prepared in deuterium oxide (200 lL; pH = 7.4; 50 mmol$L - 1

with 1.0 mmol$L - 1 of TMSP). The mixture was homoge-
nized in a vortex and centrifuged (10,000 g for 20 min
at 4�C). Part of the supernatant (500 lL) was transferred to
5-mm NMR tubes. Duplicates of all plasma samples were
prepared.

Acquisition and processing of the 1H NMR spectra

The experiments were carried out without spinning at
25�C using an automated NMR ICON sample changer on a
Bruker Avance DRX 400 (B0 = 9.4 T) spectrometer equipped
with a 5 mm TBI 1H/13C probe. T2-edited and diffusion-
edited 1H NMR spectra were acquired for each sample. The
T2-edited 1H NMR spectra were acquired using the Carr-
Purcell-Meiboom-Gill pulse sequence (CPMG) to enhance
the contribution of low-molecular-weight metabolites and
PRESAT to suppress the water signal. The following pa-
rameters were used: 300 ls of evolution time and 600 ms of
total spin-spin relaxation delay, with an accumulation of 64
scans. The magnetic field homogeneity was optimized for
each sample. The diffusion-edited 1H NMR spectra were
acquired using Stimulated Echo experiment using bipolar
gradients and WATERGATE (stebpgp) to obtain the lipo-
protein spectral profiles. The WATERGATE 3-9-19 pulse
sequence was used to suppress the water signal. A sine-
shaped gradient pulse of 90% maximum strength, with 2.0 ms
of duration (little delta), was followed by a delay (big delta)
of 100 ms to allow the eddy currents to decay. This gradient
strength was appropriate to attenuate the NMR peaks from
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the fast-diffusing molecules (small molecules). The delay for
the binomial water suppression was set at 17.0 ls, the gra-
dient pulse was 1.0 ms, and the spectra were acquired with 32
scans.

The remaining acquisition parameters were as follows:
spectral width, 6.0 kHz; data size, 32 k; acquisition time, 2.73
s; constant receiver gain, 203 and relaxation delay, 5.0 s. The
data processing included zero filling to 128 k, line broaden-
ing multiplication by 1.0 (T2-edited 1H NMR) and 3.0 Hz
(diffusion-edited 1H NMR) and Fourier-transformation. All
of the spectra were phase- and baseline-corrected and refer-
enced to TMSP at 0.000 ppm and to the methyl resonance of
lipoproteins at 0.800 ppm using TopSpin software (v3.1,
Bruker Biospin). Heteronuclear single quantum coherence
spectroscopy (2D 1H-13C HSQC), homonuclear total corre-
lation spectroscopy (selective 1D 1H-1H TOCSY), and cor-
relation spectroscopy (2D 1H-1H COSY) were performed
to confirm the chemical shift assignments using Bruker’s
available sequences.

GC-MS acquisition and processing

The lipids were extracted from 100 lL of plasma applying
a modified Folch’s methodology (Folch et al., 1957; Iverson
et al., 2001). The FA were converted to their respective FA
methyl esters (FAME) as described by Croset et al. (2000),
and the selected ion monitoring chromatograms were ob-
tained as described by Lopes et al. (2013). The experiments
were carried out using an Agilent-6890 series equipped with a
Hewlett Packard-5973 mass selective detector. FAME stan-
dards were used to confirm the assignments.

Chemometrics analysis

The data sets were individually aligned by the MATLAB
ICOSHIFT tool, using a target spectrum/chromatogram
(randomly selected) as reference and selected intervals as the
shifting guide (Savorani et al., 2010). The NMR data were
reduced five times. The spectra and chromatograms were
smoothed using a boxcar method with a window size of 5 pt
for the NMR data and 7 pt for the GC-MS data. Principal
component analysis (PCA) was performed (on the mean-
centred data) to visualize the general structure of each block
and detect any abnormalities. PCA models were applied on
four independent blocks of data: Block X1, the aliphatic re-
gion of the T2-edited 1H NMR spectra; Block X2, the aro-
matic region of the T2-edited 1H NMR spectra; Block X3, the
diffusion-edited 1H NMR spectra and Block X4, the GC-MS
chromatograms. The T2-edited 1H NMR spectral data were
divided into two blocks to avoid overestimation of the ali-
phatic region significance. The training and test sets (con-
taining approximately 2/3 and 1/3 of the total samples,
respectively) were created using the distance-based optimal
routine designed for MATLAB (Marengo and Todeschini,
1992), and the models were constructed with the training
samples to the mean-centred data (the duplicates were always
kept together in the training or in the test sets).

An optimal number of the principal components (PC) was
selected for each model by scree plot analysis. The pres-
ence of outliers was evaluated by the Q residual versus the
Hotelling’s T2 graph. All of the PCs contained in each
PCA base-level model were combined to build the top-level
‘‘super variables.’’ The HiPLS-DA was performed on auto-

scaled data, and cross-validation was used to select the ap-
propriate number of latent variables (LV). The dataset was
divided into Venetian blinds, and two validation runs (with 4
and 5 samples in the cross validation groups) were applied,
providing similar results. The class threshold was selected
when the number of false positives and false negatives were
minimized, and these values corresponded to the intersection
of the specificity and the sensitivity lines. The analyses were
performed using the Classification toolbox for MATLAB
(freeware, from Ballabio and Consonni, 2013).

Results

Clinical parameters

Ten volunteers were monitored before and 12 months after
the RYGB, showing marked weight loss and metabolic pro-
file improvement (Table 1). The body-mass index (BMI), fat
mass, percentage of body fat, triglyceride (TG), and glucose
levels decreased, whereas high-density lipoprotein (HDL)
increased significantly. However, minor changes were ob-
served in the waist–hip ratio and cholesterol low-density li-
poprotein (LDL) levels.

Base-level PCA Model

Four blocks (X1–X 4) were constructed on the base-level:
X1 Block, aliphatic region of T2-edited 1H NMR spectrum;
X2 Block, aromatic region of T2-edited 1H NMR spec-
trum; X3 Block, diffusion-edited 1H NMR spectrum, and
X4 Block, GC-MS chromatograms. The blocks were indi-
vidually interpreted by their loading values selected in the
HiPLS-DA (next section). The main parameters of the base-
level models are given in Table 2. The score plots of the first
two principal components of all four blocks, the ROC
curves demonstrating that the models are sensitive (ability
to correctly recognize samples belonging to that class) and
specific (ability to reject the samples of all other classes),
and other relevant graphs are shown in the supplementary
material.

Table 1. Clinical Parameters

Before RYGBa After RYGBa p

Weight (kg) 85.51 – 10.46 67.22 – 7.78 < 0.001
BMI (kg/m2) 32.38 – 2.11 25.48 – 1.85 < 0.001
Waist–hip ratio 0.98 – 0.08 0.91 – 0.07 0.062
Fat mass (kg) 27.80 – 5.60 14.86 – 4.69 < 0.001
% Body fat 31.47 – 7.48 22.13 – 6.50 0.008
Cholesterol

(mg/dL)
193.80 – 24.56 171.70 – 29.72 0.087

HDL (mg/dL) 36.90 – 10.51 49.30 – 13.40 0.033
LDL (mg/dL) 104.10 – 27.32 98.20 – 26.57 0.630
TG (mg/dL) 250.50 – 100.33 120.90 – 51.50 0.002
Glucose (mg/dL) 159.80 – 61.43 100.00 – 22.94 0.010
HOMA-IR 10.961 – 8.314 1.089 – 0.526 0.002

aValues are the means – SD; the means were compared using
Student’s paired t-test with equal variances assumed, p < 0.05 was
considered significant.

BMI, body-mass index; HDL, high-density lipoprotein; HOMA,
homeostasis mode assessment insulin resistance; LDL, low-density
lipoprotein; TG, triglycerides.

Boldface = statistically significant values.
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Top-level PLS-DA model

All significant base-level PC from the PCA model were
combined to build the ‘‘super variables’’ (Fig. 1); for exam-
ple, t1X1 represents the first score value (t1) from the first
block (X1). The HiPLS-DA model was constructed with four
LV and explained 25.0% and 44.5% of the variance on the X
and Y-data, respectively. The error rate was equal to 0.0%,
4.0%, and 0.0% in the fitting data, cross-validation, and ex-

ternal sample predictions, respectively. The ROC curve and
other relevant parameters and graphs of the PLS-DA model
are shown in the supplementary figures (supplementary ma-
terial is available online at www.liebertpub.com/omi). The
scores plot (Fig. 2a) shows that samples before RYGB had
rather positive scores on the LV1. The loading plot shows the
contribution of the ‘‘super variables’’ in the observed clus-
tering of the scores plot (Fig. 2b). The most significant ‘‘super
variables’’ on HiPLS-DA model (t2X1, t2X2, t2X3 and t2X4)

Table 2. Main Parameters of PCA Models

Parameters

Block X1: aliphatic
region of T2-edited

1H NMR

Block X2: aromatic
region of T2-edited

1H NMR

Block X3:
Diffusion-edited

1H NMR
Block X4:

GC-MS

Training samples 28 28 28 28
Test samples 12 12 12 12
Variables 0.65–4.77 ppma

(6636 points)
6.78–8.10 ppm
(2305 points)

0.50–3.50 ppm
(2624 points)

26.19 minb

(3543 points)
Number of PCs 6 4 4 3
X-variance 96.3% 68.9% 96.8% 98.6%
Error on CV 7.0% 19.0% 15.0% 7.0%

aThe regions between 3.20–3.40 and 3.60–3.70 corresponding to the free-H2EDTA2- (added in the sample collection) were removed from
the analysis; bThe region between 24.75–25.50 min corresponding to C19:0 (the internal standard) was also removed from the analysis.

FIG. 1. Schematic overview of a hierarchical modeling procedure. Each of the four blocks (X1–4) was summarized
by means of 6, 4, 4, and 3 principal components from the base-level PCA models. The Y-matrix of the top-level
corresponds to a dummy matrix of the classes (containing 0 and 1).
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were selected based on the distribution of Wilks’ lambda and
retaining variables with values below 0.800. The loadings of
the base-level PCA models are shown in Figs. 3–6b. One of
the highlighted ‘‘super variables’’ (t2X2) had negative values,
and the corresponding loadings were multiplied by - 1. Thus,
the positive loadings were associated with compounds that
decreased after RYGB.

Spectra and chromatograms

Representative 1H NMR spectra and GC-MS chromato-
grams are shown in Figures 3–6a. The highlighted resonances
in the chemometrics analysis were assigned according to

NMR data in the literature and were confirmed by 1D selec-
tive 1H-1H TOCSY, 1H-13C HSQC-edited. The highlighted
peaks were assigned by full mass spectra and standard co-
injections.

Metabolic profile by the T2-edited 1H NMR

The T2-edited 1H NMR spectra were divided into two
regions: the aliphatic (Block X1, Fig. 3) and the aromatic
regions (Block X2, Fig. 4). The leucine, isoleucine, valine,
threonine, lactate, and glucose levels were higher in the
samples before RYGB. The levels of acetate, glutamine/
glutamate, methylamine, dimethylamine, O-acetyl-carnitine,

FIG. 2. (a) Scores plot and (b) loadings plot from the HiPLS-DA model (LV = 2; 35.0% and 44.5% of the
explained variance in the X- and Y-data, respectively). The before RYGB samples are colored in blue and the after
RYGB samples in red, training (�) and test (*) samples; the ‘‘super variable’’ construction (tnXn) is explained in
Figure 1.

FIG. 3. (a) Representative plasma partial 1H NMR T2-edited spectrum showing the aliphatic region before RYGB,
(b) the PC2 loadings of the base-level PCA model from the X1 block (t2X1 ‘‘super variable’’), and (c) the decon-
volution of the methyl resonances from the BCAA. The resonances associated with the positive loadings correspond
to the compounds found in higher amounts in the samples before RYGB. The breaks at (3.20–3.40 and 3.60–
3.70 ppm) correspond to free-H2EDTA2- resonance removal from the chemometrics analysis. 1, isoleucine (blue line);
2, leucine ( pink line); 3, valine (green line); 4, threonine; 5, lactate; 6, acetate; 7, glutamine/glutamate; 8, methyl-
amine; 9, diethylamine; 10, O-acetyl-carnitine; 11, carnitine; 12, glucose.
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and carnitine were higher after RYGB. The aromatic region
showed that the p-cresol levels were higher after RYGB.

Lipoprotein profiles by the diffusion-edited 1H NMR

The PLS-DA loadings show several differences in the lipid
profile (Block X3, Fig. 5). The levels of VLDL, LDL, un-
saturated lipids, and N-acetyl-glycoprotein were higher be-
fore RYGB. Higher levels of HDL and phosphatidylcholine

(PtdCho) were associated with samples after RYGB. The
results of the NMR spectral analyses are in good agreement
with those of the enzymatic methods (Table 1).

Fatty acid profile by GC-MS

The PLS-DA loadings showed several differences before
and after RYGB in the FA profile (Block X4, Fig. 6), such as
decreasing levels of polyunsaturated FA (C18:3n3, C18:2n6,

FIG. 4. (a) Representative plasma partial 1H NMR T2-edited spectrum showing the aromatic region before RYGB, and
(b) the PC2 loadings of the base-level PCA model from the X2 block (t2X2 ‘‘super variable’’). The resonances associated
with the positive loadings corresponded to compounds found in higher levels in the samples before RYGB. 13, p-cresol.

FIG. 5. (a) Representative plasma partial 1H NMR diffusion-edited spectrum before RYGB, (b) the PC2 loadings of
the base-level PCA model of the X3 block (t2X3 ‘‘super variable’’), and (c) expansion and deconvolution of the methyl
resonances from lipids. The resonances associated with the positive loadings corresponded to compounds found in
higher levels in the samples before RYGB. HDL, high-density lipoprotein; LDL, low-density lipoprotein; N-acetyl of
glicop, N-acetyl of glycoproteins; PtdCho, phosphatidylcholine; VLDL, very low-density lipoprotein.
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C20:5n3, C20:4n3, C20:3n6, and C22:6n3) and increasing
levels of saturated FA (C14:0, C15:0, C16:0, C17:0, C18:0,
and C22:0).

Discussion

OMICS research has become a mainstay form of investi-
gation worldwide, including in Africa and resource-limited
countries (Dandara et al., 2014). The results suggest that
RYGB induces several alterations associated with glucose
homeostasis and fatty acid metabolism. HiPLS-DA was
successful in integrating different chemical information from
the NMR and GC-MS data, providing an extremely large and
unbiased overview of this surgical procedure.

Metabolites related to energy homeostasis

The observed decreasing levels of lactate (Krebs’ inter-
mediate cycle) after RYGB could be assigned to the de-
creasing glucose input and to consequent increasing
gluconeogenesis. Increasing plasma acetate concentration
revealed an enhanced FA oxidation due to caloric restric-
tions imposed by RYGB. These observations corrobo-
rate previously reported results by Mutch et al. (2009),
indicating that RYGB has profound effects in energy ho-
meostasis, by shifting the gluconeogenesis and the tricar-
boxylic acid cycle.

One of the most accepted theories to explain the relation-
ship between lipid metabolism and insulin resistance is the
lipotoxicity mechanism, in which an accumulation of lipids
occurs in insulin-sensitive tissues, such as skeletal muscle.
Muoio et al. (2007) suggested that an alternative mechanism,
in which the rate of oxidation of fatty acids exceeds the ca-
pacity of the tricarboxylic acid cycle and leads to accumu-

lation of such intermediates as carnitine, may be associated
with insulin resistance. L-carnitine is involved in the trans-
portation of activated fatty acids from the cytosol into the
mitochondria, where oxidation occurs (L-acetyl-carnitine
intermediates of the acetyl-CoA transportation into mito-
chondria during the oxidation of fatty acids). Additionally, it
has never been suggested that RYGB induces higher me-
thylamine and dimethylamine levels. However, further in-
vestigations are necessary.

Amino acids

Amino acid and carbohydrate metabolic interactions are
well known. Moreover, amino acids directly contribute to
‘‘de novo’’ synthesis of glucose via gluconeogenesis and
participate in the glucose recycling via the glucose–alanine
cycle (Layman and Baum, 2004). Previous reports have
demonstrated that branched-chain amino acid (BCAA) levels
are higher in obese and diabetic individuals compared with
lean and nondiabetic individuals, respectively (Newgard
et al., 2009). The observed decreasing plasma levels of va-
line, leucine, and isoleucine after RYGB are in agreement
with previously reported data, indicating that the plasma
BCAA levels decrease approximately 35% following gastric
bypass surgery ( Jung et al., 2012; Laferrère et al., 2011).
These observations could be explained by higher alanine and
glutamine levels in the skeletal muscles, which maintain
glucose homeostasis through the glucose–alanine cycle.
BCAA and hyperlipidemia are related to insulin resistance,
that decreased significantly, as demonstrated by the HOMA
(homeostatic model assessment). This result was most likely
due to the interplay between the BCAA and lipid reductions
after surgery (Batch et al., 2013; Morris et al., 2012). Lower
BCAA levels might reflect nutrient intake decrease, although

FIG. 6. (a) Representative plasma gas chromatogram-mass before RYGB and (b) the PC2 loadings of the base-level
PCA model from the X4 block (t2X4 ‘‘super variable’’). The resonances associated with the positive coefficients
correspond to compounds detected at higher levels before RYGB. C14:0, myristic acid; C15:0, pentadecanoic acid;
C16:1, palmitoleic acid; C16:0, palmitic acid; C17:0, margaric acid; C18:3n3, a-linolenic acid; C18:2n6, linoleic
acid; C18:0, stearic acid; C20:5n3, eicosapentaenoic acid; C20:4n6, arachidonic acid; C20:3n6, dihomo-c-linolenic
acid; C22:6n3, cervonic acid; C22:0, behenic acid.
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the plasma samples were collected after overnight fasting to
minimize the dietary influence. Additionally, it has never
been suggested that RYGB induces lower threonine levels.
However, further investigations are necessary.

Metabolites related to gut microbiota

Alterations in the gut microbiota were reported by Mutch
et al., with the finding of an increasing amount of plasma
p-cresol and indole after a 3–6 month period after RYGB in
morbidly obese females (Mutch et al., 2009). We have dem-
onstrated that the p-cresol levels remain high 12 months after
RYGB. Recent metabolic studies have demonstrated that gut
microflora are closely associated with diet-induced obesity
and that consumption of a high-fat diet results in decreasing
gut bacterial levels ( Jung et al., 2012). It is relatively difficult
to demonstrate whether the microbiota alteration arises from
RYGB or by changes in the intestinal permeability.

Lipoprotein profile

The plasma 1H NMR spectra have signal overlapping of
low- and high-molecular-weight compounds, and the fast
diffusion signals (small molecules) are cancelled by the
diffusion-edited 1H NMR, which simplifies the spectra.
Lipoprotein methyl groups have slightly different chemical
shifts due to magnetic susceptibility effects caused by their
different hydrodynamic radii (Liu et al., 2002). Lipoprotein
absolute concentrations were not obtained here by the diffusion-
edited 1H NMR spectra. However, we have extracted in-
formation regarding the lipoprotein lipid profiles with no
sample workup, and the results were confirmed by traditional
analyses using enzymatic methods. Therefore, the NMR
approach is faster and decreases sample amount require-
ments and analytical costs.

This approach showed that the VLDL, unsaturated lipids,
and N-acetyl-glycoprotein levels decreased with RYGB. The
decreasing levels of unsaturated lipids are in consensus with
a previous report (Williams et al., 2007) and were confirmed
by the GC-MS fatty acid profile. The decreasing levels of
unsaturated lipids could indicate excessive lipid peroxida-
tion and/or oxidative stress with RYGB (Williams et al.,
2007). We also observed higher phosphatidylcholine and
phosphocholine levels following RYGB, which is consis-
tent with an increased HDL level, given that PtdCho is the
predominant lipid (Duarte et al., 2007). Lower levels of N-
acetyl-glycoproteins and higher levels of choline-containing
phospholipids indicate lipid mobilization from non-adipose
tissues. N-Acetyl-glycoprotein is an inflammatory marker
(Bell et al., 1987), and its decreasing levels indicate a re-
duction of inflammatory processes.

Fatty acid profile

The slowing of the glucose metabolism switches energy
consumption towards lipid oxidation and FA consumption
(Barron et al., 1998). We observed that lower levels of es-
sential FA (C18:3n3 and C18:2n6, nonsynthesized by humans
and other animals) are higher before RYGB. After RYGB,
the levels of polyunsaturated FA as C20:5n3, C20:4n6,
C20:3n6, and C22:6n3 decreased, corroborating the hypoth-
esis of excessive lipid peroxidation and/or oxidative stress
after RYGB. Endogenous FAs (synthesized from carbohy-

drates as C14:0, C16:0, C18:0, and C22:0 (King et al., 2006))
are significantly higher after 12 months of RYGB. The most
significant observations were the change in the odd carbon
number FA (as C15:0 and C17:0) levels. These FA are syn-
thesised by the endogenous microbiota, corroborating the
hypothesis of a change in gut microbiota induced by RYGB
(Liou et al., 2013).

Conclusion

This study provides a holistic approach in RYGB response.
The combination of analytical methodologies and chemo-
metrics analysis was successful in providing multiparametric
metabolic responses, leading to a broader view of the meta-
bolic network. The results revealed RYGB-associated changes
in lipid metabolism, gut microbiota, and metabolites related to
energy homeostasis, thereby highlighting the multifaceted
nature of this metabolic surgery.
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Abbreviations Used

BCAA¼ branched-chain amino acid
BMI¼ body mass index

stebpgp¼ Stimulated Echo experiment using bipolar
gradients and WATERGATE

GC-MS¼ gas chromatography-mass spectrometry
COSY¼ correlation spectroscopy
CPMG¼Carr-Purcell-Meiboom-Gill pulse

sequence
FA¼ fatty acid

FAME¼ fatty acid methyl esters
1H NMR¼ hydrogen nuclear magnetic resonance

HDL¼ high-density lipoprotein
HiPLS-DA¼ hierarchical partial least squares

discriminant analysis

HSQC¼ heteronuclear single quantum
coherence spectroscopy

LDL¼ low-density lipoprotein
LV¼ latent variables
PC¼ principal components

PCA¼ principal component analysis
PtdCho¼ phosphatidylcholine
RYGB¼Roux-en-Y gastric bypass
T2DM¼ type 2 diabetes mellitus

TG¼ triglyceride
TMSP¼ 2,2,3,3-d4-3-(trimethylsilyl)

propionic acid
TOCSY¼ homonuclear total correlation

spectroscopy
VLDL¼ very low-density lipoprotein
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