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Abstract. QSAR modeling is a novel computer program developed to generate and validate QSAR 

or QSPR (quantitative structure- activity or property relationships) models. With QSAR modeling, 

users can build partial least squares (PLS) regression models, perform variable selection with the 

ordered predictors selection (OPS) algorithm, and validate models by using y-randomization and 

leave-N-out cross validation. An additional new feature is outlier detection carried out by 

simultaneous comparison of sample leverage with the respective studentized residuals. The program 

was developed using Java version 6, and runs on any operating system that supports the Java 

Runtime Environment version 6. The use of the program is illustrated. This program is available for 

download at lqta.iqm.unicamp.br. 
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Introduction 

 

 The study of quantitative relationships between chemical structure and biological activity or 

a physicochemical property (QSAR/QSPR) is an important research field nowadays. For example, 

QSPR studies are of great help in predicting physicochemical properties that are difficult to be 

obtained experimentally. Regarding theoretical medicinal chemistry, the prediction of biological 

activities of new compounds using mathematical relationships based on structural, physicochemical 

and conformational properties of previously tested potential agents is an area of intense research. 

QSAR relationships are helpful to understand and explain the mechanism of drug action at 

molecular level and allow the design and development of new compounds with desirable biological 

properties [1]. 

 A QSAR (or QSPR)1 relationship is expressed through an equation that relates the properties 

of the investigated compounds to their biological activity, with sufficient statistical significance. 

This equation must have not only a good predictive power, but it should be validated to show its 

robustness and that was not obtained by chance [2-7]. 

 There are several programs available in the literature to generate and validate QSAR 

models. Among them, the most well-known are: MobyDigs[8] BuildQSAR[9], VCCLAB[10,11], 

QSAR+[12], BILIN[13], MOLGEN QSPR [14], CORAL[15], CODESSA PRO[16] and WOLF 

[17]. Table 1 shows a comparison between QSAR modeling and these programs. Among the free 

programs, QSAR Modeling is the only one that incorporates all the validation tests suggested in 

literature[3] to generate models that are robust, that do not suffer form chance correlation and in 

which all the compounds are inside the applicability domain (no outliers or atypical compounds in 

the model). 

 

 

                                                 
1 From here on, we will refer only to QSAR, but the same procedures are applied to QSPR studies 



Tabela 1. Comparison between the main features of QSAR modeling and other programs available 

in literature. 

Program Robustnessa  Test for chance correlationb Outlier detection Free program

MobyDigs No Yes No No 

BuildQSAR No No Yes Yes 

VCCLAB No No No Yes 

QSAR+ No Yes Yes No 

BILIN No No No Yes 

MOLGEN QSPR No Yes No No 

CORAL No No No Yes 

CODESSA PRO No Yes Yes No 

WOLF No No Yes No 

QSAR Modeling Yes Yes Yes Yes 
aLeave N out Cross validation     by randomization 

 

 The purpose of this work is to introduce the new open source computer program, named 

QSAR modeling, that is able to build and validate QSAR models according to basic chemometrical 

principles. This is the first QSAR program that implements the newly developed variable selection 

ordered predictors selection (OPS) algorithm [18], the validation procedures of leave-N-out cross 

validation and y-randomization, besides outlier detection. Outlier detection features, frequently 

neglected in QSAR programs, is implement here by combining the samples leverage and their 

studentized residuals, which is a common procedure in chemometrics and not implemented in any 

of the free programs from Table 1. Outlier detection is implemented in BuildQSAR by using the 

residual standard deviation. 

 The process of model building using QSAR modeling is described using a data set formed by 

37 polycyclic aromatic hydrocarbons (PAH), having their log P (octanol-water partition coefficient) 

as dependent variable[19]. Besides the descriptors available in reference 19, topological descriptors 

were calculated by using the program DRAGON 6.[20] 

  

Methodology 



 

 QSAR modeling was coded in Java 6 language [21] and has an object oriented structure. It 

was designed to work under any operating system having Java Virtual Machine (JVM) available 

(Windows XP, Windows Vista, Windows 7, Linux, Mac OS X, Solaris, among others). It is 

necessary to have the Java Runtime Environment (JRE) version 6 installed in the operating system 

to run QSAR modeling. 

 

Results and Discussion 

 

 QSAR modeling program requires as input, two text files containing a matrix with the 

numerical values of the descriptors (X matrix formed by I rows and J columns) and a vector of 

biological activities (y vector consisting of I elements) for the I compounds under investigation. In 

the file containing the descriptors the user can, optionally, add the name of each descriptor in the 

first row. The main screen of the program showing a data set is available in the supplementary 

material (Figure 1S). 

 QSAR modeling program integrates the following tools: 

1. Data pre-processing 

2. Variable selection – OPS algorithm 

3. Regression modeling - PLS  method 

4. Outlier detection – Leverage and studantized residuals 

5. Model validation - leave-N-out cross validation and y-randomization tests 

 

Data pre-processing 

Pre-processing the data is a common procedure when building QSAR models. If variables are 

of various nature having distinct units or if they present different orders of magnitude and 

variances, as frequently happens in QSAR studies, it is recommended to preprocess the data. The 



standard procedure consists of auto-scaling the matrix X and the y vector. This corresponds to 

assigning each variable with the same weight, minimizing dominant variables’ influence in further 

calculations. The mean and standard deviation (SD) of each column of X and of vector y are 

obtained. The mean is subtracted from each column values and thereafter divided by the 

corresponding SD (expression 1).  
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where xij and xij(as) are the values of jth variable, from ith compound before and after auto-scaling, 

respectively; jx is the mean value of jth variable and sj its standard deviation. This pre-treatment is 

applied to the X matrix of descriptors and the vector y containing the biological activities. Auto-

scaling is less sensitive to outliers and autoscaled variables have a mean of zero and unity variance 

(standard deviation).  

In a few cases, mean-centering is preferred to auto-scaling, which is accomplished by 

subtracting the mean of a given variable from all of its elements. QSAR modeling has implemented 

both preprocessing types. 

 

Model building with PLS regression method 

 

 The mathematical models used in QSAR are often obtained through a linear regression 

[1,2,22,23] between the descriptors matrix and the biological activities vector. Usually, this 

regression is performed in three different ways: i) multiple linear regression (MLR); ii) principal 

components regression (PCR); and iii) partial least squares regression (PLS). 

 Historically, multivariate linear regression was first performed using MLR, which has 

always worked well because the number of descriptors was smaller than the number of samples. 

Nowadays, when using MLR in QSAR studies, it is common to use one descriptor for at least 5 or 6 

molecules, and it is assumed that the correlation between descriptors is not high (> 0.7). However, 

modern modeling programs used in QSAR studies generate thousands of descriptors which are 

highly intercorrelated, especially in 3D- and 4D-QSAR analysis [24-27]. Thus, MLR cannot be 



used in such cases, unless a careful variable selection is carried out. To avoid these problems, good 

alternatives are to use projection methods such as Principal Components Regression (PCR) or 

Partial Least Squares (PLS) [22,28,29]. When applying these methods, the number of descriptors 

and the correlations among them are no longer a problem. Between PLS and PCR, the former 

became more popular in QSAR studies and it is the regression method implemented in QSAR 

modeling. Although PLS gives similar results to those from PCR method, it usually yields more 

parsimonious regression models, i.e., models with fewer factors while still retaining a good fit. 

The optimum number of latent variables (LV) in the PLS model is determined by internal 

cross validation. This methodology is applied because projection methods are biased and it is 

desirable to avoid overfitted models. In cross validation, the data set is split into a certain amount of 

groups (of size N) and several models are built always leaving one of these groups out of the model 

building. The regression model obtained is used to predict the dependent variable (biological 

activity or physicochemical property) of samples left out from the analysis. This process is repeated 

until all samples have been excluded once. This strategy, called leave-N-out (leave-many-out) cross 

validation, is very important to have some insight about the predictability and robustness of the 

model and is always used in QSAR studies. It is common to use N equal to 1, leading to leave-one-

out cross validation, when defining the number of LV in the PLS model.. 

 QSAR modeling provides, as a result from cross validation, tables containing the values of 

the statistical parameters listed in Table 2, the regression coefficients of the PLS model (b(j) for j = 

1, 2, ..., J), the predicted values for the dependent variable in cross validation ( (i)ŷcv for i = 1, 2, ..., 

I) and the predicted values of the dependent variable in the model ( (i)ŷcal  for i = 1, 2, ..., m). 

 

Table 2. Statistical Parameters calculated by the program  QSAR modeling 

Parameter Symbol Equationa 

Prediction error sum of squares 
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Coefficient of determination of 

cross validation 
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Root mean square error of cross 

validation 
RMSECV I

PRESScv
 

Root mean square error of 

calibration 
RMSEC I

PRESScal
 

aI is the number of samples in the training set. )(iŷcv and )(iŷcal are the predicted values for  y(i) in cross validation and 

in the final model, respectively. y , cvŷ  e calŷ  are mean values of  y(i), )(iŷcv and )(iŷcal , respectively. 

 

 The cross validation procedure, as implemented in QSAR modeling program, allows the user 

to choose the maximum number of latent variables (LV) and the number of samples to be removed 

when performing cross validation (Figure 2S from supplementary information). Figure 1 shows the 

results of cross validation provided by QSAR modeling for the data set used in this study after 

variable selection. 



 

 

Figure 1. QSAR modeling window where the cross validation results are shown. All parameters 

from Table 2, regression coefficients, predicted values for the dependent variable in cross validation 

and predicted values of the dependent variable in the model can be seen in this window 

 

 Table 3 shows the results from leave-one-out cross validation applied to the data set used in 

this study after variable selection using QSAR modeling. The final PLS model was obtained with 

eight descriptors and three latent variables (LV). 

 

Table 3. Statistical parameters generated by QSAR modeling for the PLS model with 3LV and after 

variable selection. 

Parameter PRESScv PRESScal rcv rcal Q2 R2 RMSECV RMSEC 

Value 1.23 0.74 0.98 0.99 0.97 0.98 0.18 0.14 

 

 



OPS variable selection 

 

 The ordered predictors selection (OPS) algorithm was recently developed to perform 

variable selection [18] and it has already been successfully used in QSAR/QSPR studies [24,30-34]. 

The main idea of this algorithm is to attribute an importance to each descriptor based on 

informative vectors. The columns of the data matrix are reordered in such a way that the most 

important descriptors are presented in the first columns. Then, successive PLS regressions are built 

with increasing number of descriptors in order to find the best PLS model, which can be selected 

according to some of the parameters shown in Table 2. 

 QSAR modeling implements the OPS algorithm with the following informative vectors: i) 

correlation vector; ii) PLS regression vector and iii) element-wise product of the two previous 

vectors. Figure 3S (supplementary material) shows the window of QSAR modeling where the user 

chooses the appropriate options to run the OPS algorithm.  

As can be seen in Figure 3S, the program presents the following options to run OPS: 

 Number of latent variables for OPS algorithm - indicates the number of latent variables 

in a model when the regression vector is used as informative vector to sort the variables. 

Different number of latent variables in a regression model lead to distinct regression vectors 

(informative vectors) and, consequently, the sorting of variables might be affected. 

 Number of latent variables in the model - indicates the maximum number of latent 

variables in the models built during the OPS algorithm execution (see reference 18 for more 

details). 

 Number of samples to be removed during cross validation - indicates the N value in the 

leave-N-out procedure. 

 Window - indicates the initial number of sorted descriptors in the matrix analyzed by the 

OPS algorithm. 

 Increment - indicates the number of sorted descriptors added to the matrix analyzed in each 



step by the OPS algorithm. 

 Percentage of variables - indicates the fraction of the descriptors to be analyzed by the 

OPS algorithm. 

 Vector - indicates the informative vector to be used to sort the descriptors. 

 Criterion to classify the model - indicates the statistical parameter to be used to evaluate 

the quality of the model. 

 As output from variable selection with OPS, QSAR modeling program provides a table 

listing the best models obtained with the algorithm. It is possible to select one of the listed models 

and perform all the validation tests available in the program. Besides, it is possible to save the table 

with the descriptors selected for further analysis. Figure 2 shows the QSAR modeling window that 

presents the OPS results. 

 

 

Figure 2. Output from OPS algorithm. In the columns are the values of the parameter chosen to 

evaluate the models, the number of variables selected and the number of latent variables for the best 

ten models. 

  



 To illustrate the use of the OPS algorithm with QSAR modeling, a data set consisting of 37 

compounds and 407 descriptors was chosen. Electronic, steric, topological and electrotopological 

descriptors were used in this example. Such descriptors are of different nature and so, autoscaling 

(eq. 1) was the preprocessing applied prior to data analysis (descriptors and biological activities 

were both autoscaled). A correlation cutoff, also available in QSAR modeling program, was applied 

before the first run of OPS algorithm. Descriptors presenting Pearson correlation coefficient with 

the biological activity lower than 0.3, were eliminated from the pool and the number of descriptors 

decreased from 407 to 305. This new matrix (37x305) was submitted to the OPS algorithm and the 

best model was obtained with 15 descriptors, 3 latent variables and a Q² value of 0.959. In order to 

have a less complex model, a new variable selection was carried out by applying the OPS algorithm 

to this matrix containing the 15 descriptors selected above. The results obtained for the final model 

in this second run are shown in Table 3 (8 descriptors, 3 latent variables and Q2 = 0,967). 

 

Outliers detection 

 

 In order to verify the quality of the training set being used to build the QSAR model, the 

homogeneity of the set should be assured by a standard procedure for outliers detection. 

Compounds structurally different from their counterparts in the training set or with an atypical value 

of the measured biological activity do not belong to the applicability domain and should be 

removed from the training set before building the final model. A common procedure in 

Chemometrics to detect outliers in the training set is to use the leverage and the studentized 

residuals.[2, 22,35] The leverage measures the influence of a sample in the regression model while 

the studentized residual (a standardized residual) represents the difference between the experimental 

value of the biological activity and the value predicted by the model, divided by the residual 

standard deviation. The advantage of using this residual definition is that it has zero mean and unity 

standard deviation. 



 The outliers detection performed by QSAR modeling allows the user to choose the number 

of latent variables to be used in the PLS model and the results are given in a table containing the 

values of the leverage and studentized residuals for the compounds in the training set 

(supplementary information, Figure 4S). Samples with leverage higher than 3k/I, where k is the 

number of LV in the model and I is the number of samples, can be considered suspicious and should 

be analyzed carefully [2,35]. Regarding the studentized residuals, they should be randomly 

scattered around the origin indicating that they follow a normal distribution. Assuming that they are 

normally distributed at 95% confidence level ( = 0.05), the critical value of a bilateral t test is 

1.96, when the residuals are limited to the ± 1.96 interval (in general the interval ± 2.0 is used). The 

studentized residuals are measured in standard deviation units and values higher than 2.0 or lower 

than -2.0 can be already considered as statistically significant. 

 Samples presenting, simultaneously, leverage and studantized residuals above the limits 

indicated above are atypical and should be excluded from the data set. 

 QSAR modeling was used to check for outliers in the model, after variable selection 

performed by OPS algorithm. The resulting leverage and studantized residuals are shown in Figure 

3. It can be observed that there are no compounds presenting simultaneously leverage and 

studantized residuals outside the limits recommended in the literature. However, compound 10 

presents high leverage value compared to other compounds and can be characterized as an outlier. 

Besides, the residuals from compounds 2 and 23 are slightly below the lower limit. These two 

compounds can be temporarily excluded from the data, a new model is built and the improvements 

are evaluated.  If being significant they are eliminated from the data otherwise, they stay in the 

model. Sample 2 has low leverage and so won’t cause significant changes in the regression vector. 

On the other hand, the leverage from compound 23 is significant. With the exclusion of the three 

compounds, Q2 increase from 0.97 to 0.98. The high residuals observed for compounds 2 and 23 

can be an indication of uncertainty in the experimental measurements. It should be stressed that the 

elimination of samples must be done with great care and justified from the chemical or biological 



point of view. 

 

 

Figure 3. Plot of leverage versus studantized residuals, used for outlier detection. Blue lines indicate 

the limits suggested in the literature.  

 

Leave-N-out cross validation 

 

 If the leave-N-out cross validation process is repeated several times for different integers N, 

different values of coefficient of multiple determination of cross validation (Q²) will be obtained. In 

addition, for the same value of N (assuming it is not equal to one), different runs of leave-N-out 

procedure will also lead to distinct Q² values, because the order of the samples is randomized prior 

to splitting the data in the cross validation procedure. 

 However, these Q² values should not be significantly different from each other. Since the 

QSAR model is built to predict the activities of new compounds, it should not be sensitive to 

samples removed during the cross validation procedure. Thus, to evaluate the robustness of the 

model, it is highly recommended to perform repeated leave-N-out cross validation runs for different 

values of N (varying from 2 to 20% - 30% of the number of compounds).[7] 

 The robustness of the model can be accessed by leave-N-out process using QSAR modeling. 

In this step, it is possible to choose the maximum number of samples to be removed for cross 



validation, the number of latent variables in the model, which is kept constant during the validation, 

as well as the number of repetitions in each validation for each number of samples removed (Figure 

5S from supplementary information). The output of this test is a table containing the values of 

RMSECV or Q2 depending on the users’ choice. Figure 4 shows the results of Q2 from this 

validation test for a model with 3 LV, 3 repetitions and a maximum of 10 samples being removed. 

 

 

Figure 4. Results obtained from leave-N-out cross validation by QSAR modeling 

 

 The regression model obtained, after variable selection by OPS algorithm, was submitted to 

leave-N-out validation procedures and the graphical results are presented in Figure 5. As can be 

seen, the model can be considered robust, since small fluctuations in Q² values are observed up to 

10 samples removed. For each value of N the procedure was repeated three times (triplicate). 

 



 

 Figure 5. Mean and standard deviation values of Q2 obtained from Leave-N-out validation 

test applied to the PLS model built after variable selection by OPS.  

 

y-randomization 

 

 The purpose of the y-randomization test is to detect and quantify chance correlations 

between the dependent variable and descriptors [2,5-7]. To obtain an estimate of the significance of 

a Q2 value obtained for a given model, parallel models should be built with the biological activity 

values (y vector)  permuted among the molecules while the original descriptors (from X matrix) are 

kept fixed. Thus, the Q2 value of the real model must be much greater than the values obtained for 

the parallel models to assure that the real model was not obtained by chance. 

 Performing y-randomization test with the QSAR modeling program, it is possible to choose 

the number of randomizations to be performed in this validation step (Figure 6S from 

supplementary information). The program provides as result a table containing the R2 and Q2 values 

calculated for the models obtained with the biological activity shuffled and the Pearson correlation 

coefficient (r(yal,y)) between the real and the scrambled y for each model (Figure 6). The last row in 

this table contains the R2 and Q2 values for the real model, so it can be compared to those from 

parallel models.  

 



 

Figure 6. Results from y-randomization test provided by QSAR modeling 

 

 The model obtained after variable selection by OPS method was submitted to y-

randomization test considering 50 randomizations for y and excluding one sample at time (leave-

one-out). The results are presented in Figure 7. As can be seen, all R² and Q² values of the models 

obtained with vector y scrambled, yal, are lower than 0.4 and 0.0, respectively,[2] confirming that 

the real model was not obtained by chance.[7] 

 

 



Figure 7: Graphical representation of R² and Q² from models obtained with y scrambled. The distant 

point stands for R² and Q² values of the real model. 

 

Software comparison 

With the aim to evaluate the performance of QSAR modeling in building and validating models, the 

same data set was used to build QSAR models by using some of the programs cited in Table 1. 

 The VCCLAB,[11], a free program that can be downloaded from the WEB, was used to 

build PLS regression model. In this program, variable selection is performed in two steps: i) 

descriptors with small variance are eliminated; ii) the remaining descriptors are selected by using 

genetic algorithm based on Q2 values. The final model containing 190 descriptors and 2 LV, 

presented Q2 = 0. 963. Even though Q2 is similar to that from QSAR modeling (0,967), it is 

impossible to give any physical interpretation to this model due to the excessively high number of 

descriptors. Besides, this PLS model is underfitted; the projection of 190 descriptors e a 2D space 

spanned by 2LV could lead to loss of relevant information. Unfortunately, the number of LV is 

selected automatically and there is no option to change it. 

 BuildQSAR[9] is another free program and was used to build a MLR regression model. The 

program allows the use of principal component regression (PCR), but when making variable 

selection using systematic search or genetic algorithm, the only option in the program is to build 

MLR models. The final model with 7 descriptors and no outlier detected presented Q2 = 0. 963. The 

data matrix with these 7 descriptors selected used QSAR modeling to validate their model (PLS 

model with 7LV) but the proposed model was not robust and suffers from chance correlation (did 

not pass in both tests). 

The program Wolf[17] was used to build a MLR model and using genetic algorithm to carry 

out variable selection. Sample 23 was identified as an outlier and the final model with 5 descriptors 

and Q2 = 0. 961 (also inferior to that from QSAR modeling) was tested in QSAR modeling for model 

validation. This models was robust but did not pass in the y-randomization test.  

 



Conclusions 

 

 The QSAR modeling program allows building QSAR or QSPR models in a simple and fast 

way. Besides, it joins in a single program a newly developed variable selection algorithm to build 

PLS models, a procedure to detect outliers and the main validation procedures of QSAR models 

demanded by the scientific community. 

 A data set was used to illustrate the use of all tools provided by QSAR modeling and the 

results were superior to those obtained by the other programs used for comparison. Besides, several 

of the functionalities incorporated in QSAR modeling, are not available in other programs. 

 Being a free open source program, QSAR modeling is a new QSAR tool available to 

everyone, and as such it can be enhanced for the needs in a variety of research fields. 
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