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Abstract: Statistical process control (SPC) is a 
tool for achieving and maintaining product 
quality. Classical univariate statistical techniques 
have focused on the monitoring of one quality 
variable at a time and are not appropriate for 
analysing process data where variables exhibit 
collinear behaviour. Minimal information is 
derived on the interactions between variables 
which are so important in complex manufacturing 
processes. These limitations are addressed 
through the application of multivariate statistical 
process control (MSPC). The bases of MSPC are 
the projection techniques of principal components 
analysis and projection to latent structures. The 
philosophy behind these approaches is to reduce 
the dimensionality of the problem by forming a 
new set of latent variables to obtain an enhanced 
understanding of the process behaviour. If the 
variables are highly correlated, then the process 
can be defined in terms of a reduced set of latent 
variables, which are a linear combination of the 
original variables. The authors present an 
overview of multivariate statistical process control 
and its nonlinear extension for process 
monitoring. The power of the methodology is 
demonstrated by application to two industrial 
processes. 

Statistical process control (SPC) forms the basis of 
process performance monitoring and the detection of 
process malfunctions. The objective of SPC is to moni- 
tor the performance of a process over time to verify 
that it remains in a state-of-statistical-control. Univari- 
ate SPC systems consider individual quality measure- 
ment sources, and as a consequence the interactions 
between variables which are so important in today’s 
complex manufacturing plants are not considered. 
Implementing univariate SPC results in the majority of 
the variables collected on a process not being moni- 
tored. Furthermore, the monitored variables are not 
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necessarily independent hence examining a limited 
group of variables, one at a time, makes the identifica- 
tion and interpretation of process malfunctions 
extremely difficult, and consequently the results of the 
analysis may provide misleading information. 

Two types of information are monitored on a proc- 
ess; quality measurements (e.g. colour, texture, 
strength, weight, size, moisture content, material prop- 
erties, etc.) and process information (e.g. temperature, 
pressure, flow rates, speed, etc.). Compared with the 
process measurements, where a large number of varia- 
bles are monitored, only a limited number of quality 
variables are recorded and with a much lower and var- 
iable frequency. Univariate statistical process control 
charts, such as Shewhart charts (3 and Range charts), 
CUSUM (cumulative sum) plots, and EWMA (expo- 
nentially weighted moving average) charts are typically 
used for the monitoring of a small number of quality 
variables. These charts compare current process per- 
formance against process behaviour when the product 
being produced is known to conform to pre-assigned 
specification limits or when the process continues to 
operate within statistically derived control limits. The 
only variation present is as a result of common cause 
variation which cannot be eliminated from the plant. 
That is, the process is said to be in a state of ‘statistical 
control’. Univariate charts are based upon the ‘magni- 
tude’ of the variable deviations. It is, therefore, not sur- 
prising that they can provide misleading information to 
operators as to when the process is in a state of statisti- 
cal control since they ignore the interdependence 
between the variables. This limitation can have serious 
consequences since the operational failure of manufac- 
turing plants and their associated instrumentation, con- 
trollers and control manipulators is of considerable 
importance in the management of the plant. Process 
malfunctions can lead to reduced product quality, 
reduced production, plant shutdowns, increased 
reworking, increased environmental impact and a low 
return on plant assets. Consequently, the early warning 
of deviations from nominal production can provide sig- 
nificant strategic advantages. In today’s competitive 
markets, companies are required not only to react rap- 
idly to changing market demands, but to improve upon 
current levels of consistency and reliability of produc- 
tion. The need for early warning of potential produc- 
tion problems becomes a key issue. 

Multivariate statistical process control methods 
(MSPC) address some of the limitations of univariate 
monitoring techniques by considering all the data 
simultaneously and extracting information on the 
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‘directionality’ of the process variations. That is, the 
behaviour of one variable relative to the others. These 
projection techniques allow the efficient handling of 
large amounts of monitored plant data which is subject 
to measurement errors, is ill conditioned and the varia- 
bles exhibit collinear behaviour. Furthermore, they are 
not bound by the restrictive assumptions of variable 
independence and data normality. All the MSPC 
results presented in the paper have been produced 
using a multivariate data analysis package MULTI- 
DAT (copyright: CPACC University of Newcastle) 
which has been written in MATLAB code. 

2 Multivariate statistical projection methods 

The cornerstones of MSPC are the projection methods 
of principal components analysis (PCA), [l], and pro- 
jection to latent structures or partial least squares 
(PLS), [2]. The philosophy of these techniques is to 
reduce the dimensionality of the problem by forming a 
new set of variables. Principal components analysis 
(PCA) reduces the dimensionality of the problem by 
defining a series of new variables, principal compo- 
nents, which are a linear combination of the original 
measured variables and which explain the maximal 
amount of variability in the data. Adopting a similar 
approach to PCA, projection to latent structure (PLS) 
simultaneously reduces the dimensionality space of 
both the process variables and the product quality 
information, and a model is developed for the predic- 
tion of the quality variables in the reduced variable 
space. 

2.1 Principal components analysis 
The primary objectives of principal components analy- 
sis (PCA) are data summarisation, classification of var- 
iables, outlier detection, early warning of potential 
malfunctions and ‘fingerprinting’ for fault identifica- 
tion. PCA seeks to find a few linear combinations 
which can be used to summarise the data with a mini- 
mal loss of information. This reduction in dimensional- 
ity can be described as a ‘parsimonious summarisation’ 
of the data. 

Let X = xl, x2, x3, ..., x, be an m-dimensional data 
set describing either the process variables or the quality 
information. The first principal component is that lin- 
ear combination of the columns of X ,  i.e. the variables, 
which describe the greatest amount of variability in X ,  
tl = Xpl subject to lpll = 1. In the m-dimensional space, 
p1 defines the direction of greatest variability, and tl 
represents the projection of each object onto pl. The 
second principal component is the linear combination 
defined by t2 = E$, which has the next greatest vari- 
ance subject to lp21 = 1 and subject to the condition 
that it is orthogonal to the first principal component, 
t,: 

t 2  = Elp2 where E1 = ( X  - tip:) 
This procedure is essentially repeated until m principal 
components are calculated. In effect, PCA decomposes 
the observation vector, X ,  as 

m 

X = TPT = Ctzpf 

where p 1  is an eigenvector of the covariance matrix of 
X .  P is defined as the principal component loading 
matrix and T is defined to be the matrix of principal 
component scores. The loadings provide information as 
to which variables contribute the most to individual 

z=1 
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principal components, i.e. they are the coefficients in 
the principal components model; whilst information on 
the clustering of the samples and the identification of 
transitions between different operating regimes is 
obtained from the scores. 

Principal component analysis depends critically upon 
the scales used to measure the variables. If we consider 
a set of multivariate data where the variables, xl, x2, 
x3, ..., x, are of completely different types, for example 
pressures, temperatures, flow rates, etc., then the struc- 
ture of the principal components derived from this data 
set will depend essentially upon the arbitrary set of 
units of measurement. If there are large differences 
between the variances of xi,  x2, x3, ..., x,, those varia- 
bles whose variances are large will tend to dominate 
the first few principal components. It is found that in 
practice these variables may not be of prime impor- 
tance in detecting process malfunctions. This lack of 
scale invariance implies that care needs to be taken 
when scaling the data. Different scaling routines can 
produce different results. Three possible ways to scale 
the data are: select ‘natural units’ by ensuring all the 
variables measured are of the same type; variables can 
be mean-centred; or the variables can be scaled to zero 
mean and unit variance. The calculation of the princi- 
pal components is then based upon the transformed 
matrix. There are no clear-cut rules as to which form of 
scaling should be adopted, it is totally problem depend- 
ent. It may be beneficial to examine the results using 
different scaling regimes. 

One of the features of PCA is that the less important 
components often describe the noise in the data. If the 
process variables are colinear, k principal components 
(k 4 m) will explain the majority of the variability, i.e. a 
smaller number of principal components than original 
variables are required to explain the variability in the 
data. Consequently it is desirable to exclude these com- 
ponents. 

k 

X = TPT + E = t,pT + E 
2=1 

The number of principal components that provide an 
adequate description of the data can be assessed using 
a number of techniques. Typically, cross-validation is 
employed [3]. In practice two or three principal compo- 
nents are frequently sufficient for multivariate SPC 
with the latent variables generated from PCA forming 
the cornerstone of the multivariate statistical process 
control charts [4-61. 

In process monitoring, once a plant malfunction has 
been detected it is important to identify those variables, 
or combination of variables, that characterise the prob- 
lem. Typically, in the literature, it is usually emphasised 
that the first two principal components contain all the 
important information. For the early warning of a 
plant malfunction this may not necessarily be the case. 
In some situations, variables that indicate the onset of 
a plant problem have minimal impact on the first two 
components but are seen to dominate the lower-order 
principal components. Analysis and usage of these 
lower order components provides a valuable aid to 
plant fault detection. 

2.2 Prediction of product quality 
Economic pressures on market perceptions of product 
quality and reliability has necessitated that the more 
slowly monitored quality measures be predicted from 

133 



the more rapidly monitored process variables; inferen- 
tial estimation or software sensor. This can be achieved 
through the application of regression methods, i.e. the 
identification of a relationship between the quality 
information and the process variables, hence knowl- 
edge of the final quality of the product may be pre- 
dicted prior to that obtained from the quality control 
laboratory, for some processes this can result in a sav- 
ing of many hours. The most widely used technique is 
multiple linear regression (MLR). However, this 
approach is inappropriate in multidimensional systems 
where variables are typically highly correlated, since 
the model coefficients can be numerically unstable, 
small perturbations in the data can result in major 
changes to the model. Alternative regression 
approaches such as ridge regression and regularisation 
methods resolve the problem of singularity but do not 
automatically reduce the dimensionality of the prob- 
lem; this is of core importance in process performance 
monitoring in order not to overload process operators 
with a large number of charts. 

Principal component regression (PCR), based upon 
the regression of the scores, calculated from PCA, on 
the quality variable of interest, addresses both the sin- 
gularity and dimensionality problem but it treats the 
quality variables as though they are independent. The 
technique of projection to latent structures (PLS) uti- 
lises the information on both the process and quality 
variables and treats both sets of information as being 
dependent. Nonlinear versions of these approaches, 
nonlinear PCR and nonlinear PLS, have recently been 
developed [7-91 which incorporate a neural network 
within the inner model of the algorithm. 

2.3 Projection to latent structures (PLS) 
At the present time, statistical quality control methods 
based upon the product quality data have been the 
standard approach to process monitoring. Conse- 
quently the majority of the data collected on process 
variables is wasted. In multivariate SPC, the process 
data can be used in conjunction with the quality infor- 
mation. The process variables are typically collated in a 
data matrix X, with the quality information contained 
in a data matrix Y, these two sets of information can 
be related using the multivariate statistical technique of 
projection to latent structures (PLS). 

Projection to latent structures is a tool for solving 
regression problems with highly collinear process varia- 
bles. It simultaneously reduces the dimensionality of 
the X and Y spaces to find the latent vectors for the X 
and Y spaces which are most highly correlated, i.e. 
those that not only explain the variation in X, but that 
variation in X which is most predictive of Y. The tech- 
nique is well referenced in the literature [2, 101. Given a 
set of information on m process variables, X, and k 
quality variables, a factor from the X and Y data are 
evaluated, tl and u I ,  

tl  = X W ~  and u1 =Yel  
These equations are referred to as the outer relation for 
the X block and Y block, respectively. The vectors w, 
and e1 are called factor weights. PLS finds the factor 
weights in such a way that t l  and u l ,  are most corre- 
lated to one another. A linear regression is then per- 
formed between the first pair of factors tl and u l ,  

U 1  = b l t l  + € 

This relationship is termed the inner relation of the X 

and Y blocks. The final stage of the algorithm is the 
regression of X on its factor t l  and Yon its factor u l :  

X = t l pT  + E  and Y = ulq, + F 
where E and F are the residuals. The above three steps 
are repeated with the residuals E and F replacing X and 
Y, respectively. Up to m pairs of factors can be 
derived, but in a similar way to PCA, only the first few 
contain the important information relevant to the oper- 
ation of the process. Cross validation or other related 
approaches can be used to select the number of factors 

PLS can also be viewed as a biased regression 
method and the final model can be expressed in terms 
of the X data as the regression model: 

Y = X p + F  
,D = W(PTW)-’QT 

Projection to latent structures enables information on 
the final quality of the product to be made available to 
plant operators on a more regular and timely basis. 
Just as in PCA, the scores of the new variable combi- 
nations resulting from the application of PLS can form 
the basis of plant performance monitoring charts. An 
interesting question is then ‘Which approach is the 
more appropriate for performance monitoring?’. The 
PLS-based approach is used when Y is of high quality 
and measured as frequently as X ,  or when a good rep- 
resentation exists between X and X otherwise PCA 
should be used. 

T 
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3 Performance monitoring charts 

The primary requirement for the development of multi- 
variate SPC charts is the acquisition of data that is rep- 
resentative of nominal process operation, that is when 
the plant is producing ‘within specification product’. 
The data population can be obtained from historical 
data bases or designed experiments. A model, based on 
historical data collected when only common cause vari- 
ation was present, can be constructed using either PCA 
or PLS. Future behaviour is then referenced against 
this ‘nominal’ or ‘in-control’ model. The basis of the 
success of this approach is the recognition that many of 
the measurements are highly correlated and thus differ- 
ent combinations of the variables may define the same 
underlying disturbances or events occurring in the 
process. Consequently, it can be assumed that when the 
process is producing a product within predefined speci- 
fication limits, the dimensionality of the process can be 
substantially reduced to a few latent variables. Typi- 
cally, this information is presented graphically in terms 
of time series plots, and two and three dimensional rep- 
resentations of the new latent variables. The three most 
common forms of monitoring charts are those of the 
scores against time, two and three dimensional plots o f  
the scores and the squared prediction error. 

3. I 
We initially focus upon PCA, although the concepts 
are directly transferable to PLS as will be seen later. 
Once a model has been developed from the nominal 
data set using k principal components, X = TPT, the 
fitted values, kp can be calculated for each new multi- 
variate observation. These values are then used to eval- 
uate the squared prediction error, SPE, for each new 
observation, xii i.e. the squared difference between the 
observed values and the predicted values from the 

Squared prediction error plot 
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nominal or reference model: 
k 

j=1 

The squared prediction error plot provides the user 
with a facility to identify a previously unidentified 
event. Using the latent variable relationships developed 
from the historical data set, the scores for each new 
observation are located within the score plane. Typi- 
cally, although not necessarily, principal components 
one and two and the calculated value of the SPE are 
plotted in a three-dimensional diagram. Figs. 1-3 show 
a number of performance monitoring chart configura- 
tions involving plots of SPE and the scores, [4]. In 
Fig. 1 the principal components TI and T2 form the x 
and y-axes of the monitoring chart, respectively, with 
the squared prediction error (SPE) defining the z-axis. 
Each observation is located on this plot via its scores 
and SPE. Fig. 2 gives three possible two-dimensional 
representations of the scores and the SPE. Fig. 3 can 
be used to monitor the SPE at each sampling time 
point. 

1 %  n 

Y -- 

U 

Fig. 1 
scores 

Three-dimensional representation of squared prediction error and 

Inl 
x x  ~ooo% I x  x x 

I 

T I  SPE 
Fig. 2 
diction error 

Various two-dimensional representations of scores and squaredpre- 

A process malfunction can lead to one of the follow- 
ing two situations. On the one hand, the fault can 
change the correlation structure amongst the measured 
process variables. In this case, the nominal PCA model 
is no longer valid and significant prediction errors will 
result. This can be detected from the SPE plot and is 
represented by ‘A’ in Figs. 1-3. On the other hand, the 
process malfunction may not alter the correlation 
structure among the process variables. For this sce- 
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nario, the SPE will remain within the control limits but 
the scores will move outside the envelope of nominal 
operation. This situation is represented by ‘x’ in Figs. 
1-3. Acceptable process performance would fall within 
the envelope of normal operation (‘0’ in Figs. 1-3). 

ki 
n A n  

n 

0 0 0  x x  l o o  x x x  
time 

Fig. 3 Squared prediction error against time 

3.2 Confidence bounds 
Once a model has been developed which reflects nomi- 
nal plant production, it is necessary to detect any 
departure of the k-dimensional process from the refer- 
ence model. Adopting an approach similar to that for 
univariate statistical process control, nominal operating 
regions can be defined for each principal components 
scores plot based upon standard statistical distribu- 
tional theory. One approach is to assume that the 
underlying k-dimensional process is normally distrib- 
uted. It is possible to determine whether the process is 
in control by calculating Hotelling’s [l 11 squared dis- 
tance for each pair of principal components of interest: 

T 2  = n(p0 - Z ) T S - l ( p ~  - Z) 

T2 is distributed as the statistic (n - l)kF/(n - k), where 
F has a central F-distribution with k,  n - k degrees of 
freedom. This relationship is used to establish control 
limits where there is an 100a% chance of a false alarm, 
where a is typically of the value 0.05 or 0.01. An out of 
control signal is identified if 

Confidence bounds for a scores monitoring chart are 
comparatively straightforward to evaluate. Rules simi- 
lar to those adopted for univariate SPC charting meth- 
odology for identifying when a process is out of 
control, or moving out of control, can be applied: (i) 
two points lie outside the warning limits (i.e. a = 0.05), 
(ii) one point lies outside the action limits (i.e. a = 
0.01), (iii) seven points consistently increase or (iv) 
seven points consistently decrease. 

3.3 Interpreting the ’out of control’signal 
and /causation variables‘ selection 
When a process is recognised to be out-of-control or 
moving out-of-control, operational personnel need a 
tool to identify the variables, or combination of varia- 
bles, that are responsible for, or indicative of, a drift in 
the process operating conditions. Adjustments can then 
be made to the process to avoid the continued manu- 
facture of non-conforming product. Typically, once the 
process has been identified as not being in a state of 
statistical control, it is usually the responsibility of the 
process operators or process engineers to diagnose the 
assignable cause(s) and implement the appropriate cor- 
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rective action. This stage is more easily carried out 
through the interrogation of the multivariate control 
charts constructed using either PCA or PLS and by 
reverting back to the original process variables and 
examining their contribution to the calculated scores 
and the squared prediction error. At this juncture it 
may be possible to identify the most likely set of origi- 
nal variables whose contribution has increased over 
that defined in the nominal model and which are reflec- 
tive of the non-conforming behaviour. One possible 
graphical approach is through the implementation of a 
variable contribution plot, [ 121, which describes the 
change in the new observation variables relative to the 
average value calculated from the PCA/PLS model. 

However, it is not necessarily those variables which 
exhibit the greatest changes which are solely reflective 
of an out-of-control signal. It may be a conjunction of 
small, or jointly small and large, changes in the process 
variables which indicate the probable cause of the 
problem. In practice, such diagnostic plots could 
become prohibitively complex in processes where there 
are a large number of monitored variables and poten- 
tially there will be many variable combinations to inter- 
rogate. In this case a random search optimisation 
procedure could provide an automatic method of han- 
dling a potentially combinatory explosive problem and 
should help identify the critical combination of varia- 
bles. This is currently being explored. 

4 Example of a continuous manufacturing plant 

We consider for illustration of these techniques a man- 
ufacturing process where there are 14 online monitored 
variables (Table 1) and 5 property (quality) variables 
(Table 2) which are measured offline in the quality 
assurance laboratory, Table 1. 

Table 1: On-line measured process variables of the con- 
tinuous manufacturing plant 

Process variables Definition 

inlet temperature 
maximum temperature in zone 1 

outlet temperature from zone 1 

maximum temperature in zone 2 

outlet temperature from zone 2 

inlet temperature of zone 1 coolant 

inlet temperature of zone 1 coolant 
position where Trnaxl occurs 

Position where TmaxP occurs 
inlet flow of feed 1 

inlet flow of intermediate feed 1 
inlet flow of feed 2 

inlet f low of intermediate feed 1 

vessel pressure 

Table 2: Off-line measured process variables of the con- 
tinuous manufacturing plant 

Quality variables Definition 

Conv 

MW" 

MW, 
LCB 

SCB 

cumulative conversion of monomer 
number of average molecular weight 

weight average molecular weight 
long chain branching 

short chain branching 

The economic operation of this process usually 
requires that un-reacted species be recovered and recy- 
cled back into the process. This can introduce impuri- 
ties into the manufacturing process. A further 
identified problem is the occurrence of vessel fouling 
which limits the heat transfer capability thus making 
the temperature control system less effective. Data 
from the stable operating regions is available from a 
historical database and provides the nominal (refer- 
ence) data set. 

Table 3: Cumulative percentage of variability explained 
in X-block using principal components analysis 

Principalcomponent 1 2 3 4 5 6 7 

Cumulative percentageof 33.3 51.1 67.1 76.6 84.4 90.0 95.0 
variability explained in X 

For this problem, a PCA analysis was performed on 
the nominal data and the principal components evalu- 
ated, Table 3. The first four principal components 
explain approximately 80% of the variation in the proc- 
ess variables whilst seven components explain 95% of 
the variability in the data. 

Using cross-validation, seven components were iden- 
tified to be the 'optimal' number of components to be 
used in the monitoring of the process. Multivariate 
monitoring charts were initially constructed using the 
scores from the first two principal components together 
with the squared prediction error (SPE). Fig. 4 shows 
the resultant plot of the scores for principal component 
1 versus principal component 2, calculated from the 
nominal data; '*' define the nominal data set. As new 
data is monitored the effect of a process malfunction 
(in this case a fouling problem) is observed on both 
charts '+'. In this process, the effect of fouling on the 
temperature profile results in the new scores appearing 
outwith the nominal data region. This would have 
alerted the plant operators of a problem on the proc- 
ess. It is interesting to observe that the plot of principal 
component two versus principal component three, 
Fig. 5 provides even more conclusive evidence of the 
occurrence of a problem within the process. Although a 
problem within the reactor was identified in principal 
component two, principal component three provides 
stronger evidence of a problem. The value of the scores 
for principal component three are larger in magnitude 
for the non-conforming data compared with those from 
principal component two. In terms of the early warning 
of plant malfunctions it is not always the first two prin- 
cipal components which aid the identification of the 
process moving out of control. Fig. 6 demonstrates 
that the effect of a problem within the process can also 
be identified using the squared prediction error plot. 

The confidence bounds plotted on the scores plot are 
calculated using Hotelling's T2 statistic. A problem 
with the T' confidence bounds is that one percent of 
the samples, known to conform to the customers 
requirements, can potentially lie outwith the bounds 
because of the statistical interpretation of confidence 
bounds. A further problem with the T2 bounds is that 
regions of no information are identified within the 
bounds, the assumption made is that if a sample falls 
within the T2 bounds then there is no problem with the 
process. This feature of confidence bounds has been 
identified by operators and engineers as a limitation of 
the current methodoloy. A modified form of confidence 
bounds which totally encapsulates the nominal data set 
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has recently been developed to overcome these prob- 
lems [7-91. 
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Fig. 4 ,Scores plot for principal components I and 2 
* = nominal data, + = data from process malfunction 
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Fig.5 Scores plot for principal components 2 and 3 
* = nominal data, + = data from process malfunction 
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Fig.6 SPEplot for a foulingproblem 
* = nominal data, + = data from process malfunction 

The variables which primarily determine the direction 
of the individual principal components, t l ,  t2, etc., are 
those which have the ‘largest’ absolute loadings. If a 
process problem is identified, then the principal compo- 
nent in which non-conforming behaviour has been 
most clearly identified is believed to contain informa- 
tion which is reflective of why a process has moved 
away from the nominal operating region. For this 
problem, the identification of those variables which 
may be reflective of the problem is contained within 
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principal component three and to a lesser extent princi- 
pal component 2. Principal components one, two and 
three are assessed more closely: 

tl = 0.184T,,1+0.394T~a,1+0.114T~,t~+0.382T~ax2 
+OA273Tout2 -0. 105Tc,n1 -0.012Tcan2 -0.371Xtmazl 
-o.358xt,az2 +0.341F,oi +0.325Fso1 +o.o33F,o2 
-0.114FSo2 +0.256Pres 

t 2  = -0.212T5,1 -0.259Tmax1 -0.428Tout1 +0.319Tmax2 
+O. 101T0u~ -0.319Tc,n1-0. 162T,,n2 -0.263Xtmazl 
- 0.283Xtmax2 - 0.234F,ol +o.327Fso1 -o.029Fao2 
+ 0.384FSo2 + 0.074Pres 

t 3  0.266Ttn1 +0.119Tm,,1 -o.349Toutl -0.137Tmax2 
-0.418Tout2 - 0.442Tc,nl-O.42OTcan2 -0.242XtmaZl 
+o. 148XtmaZ2 +0.089F,01 - 0.142F,oi +0.331F,02 
-o.o25FSo2 +0.093Pres 

The dominant variables for principal component one 
are variables 2, 4, 8, 9, 10 and 11, Tmaxl, Tmax2, Xtmaxl, 
Xtmax2, F,,, and Fdl, respectively, whilst principal com- 
ponent two primarily relates to variables 3, 4, 6, 11 and 
13, Toull, Tmm2, TCln1, F,, and FSo2. Principal compo- 
nent three explains the majority of the variability aris- 
ing from variables, 3, 5, 6, 7 and 12, Toutl, ToutZ, Tcznl, 
Tcm2 and F,?2. This breakdown clarifies the reasoning as 
to why it is not until the third component that the 
occurrence of fouling is conclusively recognised, the 
dominant variables are in fact all temperature measure- 
ments. In discussions with engineers, it was acknowl- 
edged that the combination of variables identified as 
determining the direction of principal component three 
are those which would change with the onset of foul- 
ing. It is therefore very important not to neglect lower- 
order plots of the scores. 

Figs. 7 and 8 are known as contribution plots and 
represent the scaled variables for each of the past four 
data samples from the process i.e. the contribution 
from the current point is displayed along with the three 
previous calculated contributions to the score plot. 
Fig. 7 is a contribution plot typical of when the proc- 
ess is operating within the bounds of its nominal oper- 
ating region, whilst Fig. 8 is an example of a plot 
where the process is experiencing operational problems. 
The main difference between the two plots is the scale 
of the contributions. For a process ‘in control’ the 
range of values will be as expected for good plant per- 
formance (+/- 20). In contrast, ‘out-of-control’ produc- 
tion will be identified by certain variables making 
larger contributions than those anticipated, with the 
prediction error being comparatively larger. By identi- 
fying those variable combinations which have experi- 
enced the greatest change, in conjunction with the 
operator’s expertise, it is possible to relate a particular 
sequence of changes to a particular process malfunc- 
tion. Variables 3 ,  5, 6 and 7, Toutl, TvUtq Tclnl and Tcin2 
respectively, exhibit the greatest deviations during the 
time span monitored for the fouling problem. This 
information allows the operator to interpret the process 
behaviour in terms of the original plant measured vari- 
ables. 

Instead of just looking at the process variables, it is 
often interesting to monitor the effect the quality of the 
resultant product. This is accomplished by using the 
latent variables of PLS to monitor the final quality. 
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For this approach, four latent variables were identified 
using cross-validation as being sufficient to describe the 
process satisfactorily, Table 4. 

Table 4: Cumulative percentage of variability explained 
in Y-block using projection to latent structures 

Latent variables 1 2 3 4 5 6 7  

Cumulative percentage of 66.1 87.0 91.6 94.6 95.7 96.7 97.2 
variability explained in Y 
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Scores plot for PLS latent variables I and 2 

The plots for latent variables one and two, and three 
and four, are shown in Figs. 9 and 10, respectively. 
From the plot of latent variable one versus latent vari- 
able two, there is no clear indication of a process prob- 
lem. However, when the lower order components are 
monitored, there is strong evidence that the quality of 
the final product is being degraded by the fouling prob- 
lem. This time the problem is identified most clearly 
through latent variable 4. 
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PLS latent variable 3 
Fig. 10 Scores plot for PLS latent variables 3 and 4 
* = nominal data, + = data from process malfunction 

5 

The monitoring of batch processes is strategically 
important to ensure their safe operation and the pro- 
duction of consistently high-quality products. Currently 
some of the difficulties contributing to the failure to 
provide adequate monitoring include, the lack of relia- 
ble online sensors for measuring product quality varia- 
bles, the presence of nonlinearities and the absence of 
steady-state operation. Most of the existing industrial 
approaches for achieving consistent and reproducible 
results from batch processes are based upon the precise 
sequencing and automation of all the stages in a batch 
operation. Monitoring is usually confined to checking 
that these sequences are followed and that certain reac- 
tor variables, such as temperatures and reactant feed- 
rates, are following acceptable trajectories. 

Previous approaches to the monitoring of batch data 
has focused on the use of either fundamental mathe- 
matical models (based on state estimation methods) or 
detailed knowledge based models (using expert systems 
or artificial intelligence methods) to process the data. 
An alternative approach based on empirical models has 
been developed using multiway principal component 
analysis (MPCA) and multiway projection to latent 
structures (MPLS). MPCA and MPLS are extensions 
to the projection techniques of PCA and PLS and are 
based on the philosophy of compressing the process 
information into a few latent variables which are a lin- 
ear combination of the original variables. The only 
information needed to develop an SPC monitoring pro- 
cedure is a historical database of past successful 
batches. Batch data differs from continuous data in 
that the problem is now a three-way problem, the 
added level being that of time [13, 141. 

The major issue which arises is how to handle the 
large number of measurements taken on the process 
which are themselves not independent. The measured 
variables are also autocorrelated in time. It is not sim- 

Multivariate SPC in batch processes 
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ply the relationship between all the variables which is 
important, it is the entire past histories of the trajecto- 
ries. The technique of principal components analysis 
can be used to reduce the dimensionality of the prob- 
lem by projecting the information down onto a lower 
dimensional space which summarises the behaviour of 
the variables relative to one another and their time his- 
tory during previous successful batches. A simple way 
to view MPCA is to consider opening out the three- 
way matrix into a two-way array, by placing each two- 
dimensional time slab (batches x variables) side-by-side 
and performing a standard PCA, Fig. 11. 

".. I \ \ 

variables (M) 

Fig. 11 
gor 

Unfolding of three-way data proposed by Nomikos and MacGre- 

Again it is possible to perform a version of PLS on 
the batch data, multiway partial least squares (MPLS). 
This approach is a combination of PLS and MPCA. 
The objective is to extract information from the process 
measurement variable trajectories that is more relevant 
to the final quality variables of the product. 

An example of using MPCA to analyse batch per- 
formance is shown in terms of the monitoring charts 
constructed from a multiway principal components 
analysis on a nominal data set of 40 batches. A similar 
series of plots to those used for continuous processes 
monitoring can be used for batch monitoring. Fig. 12 
illustrates a plot of the scores for the first two principal 
components. A number of unsatisfactory batches were 
also present in the data set as indicated by the move- 
ment of the scores outside the confidence bounds for 
specific batches (Fig. 13). Hotelling's T2 was once 
again used to evaluate the bounds. Although monitor- 
ing charts are in their infancy for the monitoring of 

scores for PC 1 vs PC2 with 95% & 99°/o conf. ellipsoids 

60 

40 

N 20 
U 
CL 

g o  

: -20 

pi 

-40 

-60 

_ _ _ - - - -  

' \ 04 03 om , 

I 
IO 50 0 50 

scores on PC1 
0 

Fig.12 
region defined by 95% and 99% confidence limits 

Scores plot for the 40 nominal batchs with normal operating 

IEE Proc-Control Theory Appl., Vol. 143, No. 2, March 1996 

50 
N 

U a 
C O  

m 
pi 3 - 50 

6 Nonlinear principal component analysis 

Principal component analysis is now widely used for 
reducing the dimensionality of the problem to obtain 
an enhanced understanding of process behaviour. 
However, the linearity assumption can lead to mislead- 
ing conclusions in the analysis of data from highly non- 
linear processes. Conventional PCA is not effective 
when the variables are nonlinearly correlated and in 
such situations nonlinear principal component analysis 
(NLPCA) is more appropriate. 

Nonlinear principal components analysis can be used 
in a similar way to PCA, that is data summarisation, 
data visualisation and data exploration for nonlinearly 
correlated data. The concept of extracting features 
from highly nonlinear data has been discussed by a 
number of researchers, with most techniques being 
based upon artificial neural networks. Of particular 
interest is the ability of the autoassociative neural net- 
work topology (Fig. 14) to provide a transformation 
into a nonlinear feature space [16]. The architecture of 
this network comprises five layers: an input layer, map- 
ping layer, bottleneck layer, demapping layer and an 
output layer. The use of nonlinear features has been 
shown to successfully describe the underlying structure 
of nonlinear data, [17]. Extension of the autoassociative 
neural network architecture to allow the generation of 
nonlinear principal components requires the use of the 
statistical procedure of principal curves [ 181. 

output I I ayer 
input mapping bottle-neck 
layer layer layer 

de-mapping 
layer 

Fig. 14 Autoassociative neural network topology 
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The main difference between PCA and nonlinear 
PCA is the introduction of nonlinear mappings 
between the original and reduced dimensional-space. A 
commonly used nonlinear function is the sigmoid func- 
tion 

1 
1 - exp-” 

C ( X )  = 

A linear principal component minimises the sum of the 
orthogonal deviations between a straight line and the 
data whilst the nonlinear approach summarises the 
data by a smooth curve (a principal curve). Principal 
curves are generalisations of principal components. The 
calculation of principal curves essentially contains two 
steps, a projection step and a smoothing step. The cal- 
culation is generally started with the principal compo- 
nent as the initial curve. In the projection step, data 
points are projected down onto the curve. Then, in the 
smoothing step, the curve is smoothed using techniques 
such as the locally weighted regression smoother [19] or 
kernel smoothers [20]. The procedure is iterated 
between the two steps until convergence results. 

In principal component analysis, the principal load- 
ing vectors are used as a model to generate principal 
scores for new data. However, the principal curve pro- 
cedure does not calculate any nonlinear loadings. In 
industrial process applications, it is desirable to have a 
nonlinear principal model which can be used to gener- 
ate nonlinear principal components for new data. Dong 
and McAvoy I211 proposed using neural networks to 
learn nonlinear principal component models. Two net- 
works are required. The first maps the input data (m 
dimensional) onto one-dimensional principal scores, 
evaluated from the principal curve. The second model 
defines the relationship between the principal scores 
and the m-dimensional corrected data set. If a nonlin- 
ear function can be used to express the curve, this func- 
tion is equivalent to the principal loadings for linear 
PCA. When the data is projected onto the curve, 
indexes can be found which express the projected 
points. These are equivalent to the principal scores for 
linear PCA. In nonlinear PCA, just as with linear PCA, 
there is no response variable hence it is more suited to 
feature extraction than prediction. 

Nonlinear PCA now enables the multivariate process 
performance monitoring of nonlinear processes. How- 
ever, if linear principal component analysis reduces the 
dimensionality of the problem satisfactorily, then a lin- 
ear approach to monitoring must be adopted since the 
interpretation of a linear technique is more straightfor- 
ward for engineers and operators. As described previ- 
ously, movement of the scores from regions of nominal 
operation, together with increasing squared prediction 
error values, identify changes in process operation that 
are other than ‘common cause’. In some cases, espe- 
cially with linear systems, the movement of the scores 
can be visibly different from those of the nominal oper- 
ating region with different faults causing the scores to 
move off in different directions. The directions of proc- 
ess variable movement can be monitored by studying 
the projected score movement in the reduced score 
space. However, in some situations, especially in non- 
linear systems, the movement of the score plots are not 
as distinctive. Consequently it can be difficult to locate 
the score movements since they are buried within the 
nominal scores region. Here we propose using an accu- 
mulated scores plot to distinguish between different 
fault situations, [22]. The accumulated scores are 

defined as follows: 
t 

A = (X - z )  d t  

where x is the nonlinear score, X is the mean of the 
nominal nonlinear score, and A is the accumulated 
nonlinear score. The accumulated scores for the nomi- 
nal operating region cluster around zero with the accu- 
mulated scores during process malfunctions moving 
away from the score plot defining the nominal operat- 
ing region. This approach is somewhat analogous to 
the cumulative sum (CUSUM) approach. 

6.7 
An industrial processing unit provides material for fur- 
ther processing into machinable components. The proc- 
ess is subject to raw material and energy supply 
changes as well as internal chemical changes. These 
changes affect the process operation and consequently 
the resulting material. The detection of process move- 
ment into different regions of operation, due to 
changes in process physics and chemistry, is vital to 
ensure the consistent production of material essential 
for subsequent processing phases. The process opera- 
tors are known to have observed a number of different 
operating regions during production campaigns. It is 
difficult for the plant operators to control the move- 
ment between these different operating regions given 
the limited knowledge of the process operation and the 
multitude of reasons for the changes. If the drift from 
one operating region to another could be identified and 
the cause-effect relationship established, then corrective 
action could be taken, leading to more consistent pro- 
duction and enhancing subsequent manufacturing oper- 
ations. Principal components analysis was applied and 
the distribution of the first three principal components 
examined. 

Fig. 15 shows the plot of the scores for principal 
components 2 and 3 which were calculated using linear 
PCA. Interestingly once again it appears that the 
higher-order principal components (plot of the scores 
for principal component 1 and 2 is not shown) extract 
more information on the process behaviour indicating 
the possibility of at least two major regions of opera- 
tion, if not three. Here, the points denoted by ‘0’ are 
for the first data set and the points denoted by ‘+’ are 
for the second set of data. In comparison, the results of 
the nonlinear PCA analysis are shown in Figs. 16 and 
17; plots of the nonlinear scores for principal compo- 
nent 1 versus principal component 2, and the nonlinear 
scores for principal component 1 versus principal com- 
ponent 3, respectively. Clearly six operating regions are 
now identifiable with the possibility of more during 
periods of operating region transition. 

Fig. 18 shows the plot of the ‘accumulated scores for 
nonlinear principal component 2’ for the two data sets. 
Again there is clear indication of a change in the proc- 
ess operating conditions over the first period of moni- 
tored operation where the plant was observed to be 
moving into a difficult region of operation. Following 
changes to the plant operating conditions the process 
slowly moves back into a more acceptable region of 
operation near to the original nominal region. It is very 
encouraging that the nonlinear approach is able to pro- 
vide conclusive evidence of the plant behaviour that 
had been perceived by the operating personnel. 

Application study - number 7 
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6.2 
Returning to the problem described in section four, a 
linear principal component analysis was initially per- 
formed on the process data. Two principal components 
were found to only explain 51.1% of the variability in 
the X-block, with three principal components explain- 
ing 67%, and seven components explaining 95%. In this 

Application study - number 2 
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case, there is a substantial amount of variance which 
cannot be explained by the first two, or indeed three, 
principal components. 
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0 

Fig. 18 Accumulated scores plot for nonlinear principal component 2 
showing dgerent operating regions 
- first condition, second condition 

samples 
Fig. 19 SPEplofs for dflerent fault types: fouling 

samples 
Fig.20 SPEplofs for dgerent fault types: impurity 

Nonlinear principal component analysis was then 
used to analyse the reactor data. Using two nonlinear 
principal components 74.8% of the variability in the 
data is explained, whilst three nonlinear principal com- 
ponents explain 89.8% of the data variance. This 
clearly indicates that nonlinear principal component 
analysis is able to extract more information from the 
data. A nonlinear principal component model with 
three principal components was subsequently devel- 
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oped. Using linear principal component analysis, the 
squared prediction error was calculated for the four 
different fault situations and the subsequent plots are 
presented in Figs. 19-22. The four fault situations are 
reactor fouling, reactive impurity, solvent problems, 
and combined reactor fouling and reactive impurities. 
In these plots, the first 50 data points represent the 
nominal operating conditions and the remaining 25 
represent the phase when a process malfunction had 
occured within the reactor. It can be seen that all the 
various faults can be detected by monitoring the SPE. 
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Score plots of the linear principal components have 
previously been used to used to identify the onset of 
the different faults. The motivation of this work is to 
identify the type of fault which has occurred. It is 
believed that different faults can result in different 
process measurement values which could be projected 
into different areas of the score space. In this study the 
use of nonlinear principal component score plots to 
localise the four different fault situations resulted in the 
distribution observed in Figs. 23-26. It can be seen 
here that the faults cannot be distinguished from the 
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scores produced for the nominal data set. In compari- 
son, Figs. 27-30 show the plot of the accumulated 
scores. The different fault situations can now be clearly 
distinguished. Fig. 27 shows the trajectories of the 
accumulated scores for the nonlinear principal compo- 
nents 1 and 2. From Figs. 27 and 28 it can be seen that 
fouling is characterised by the movement of the scores 
in the north-east direction while the combined impurity 
and fouling faults are characterised by the score move- 
ment in the north-west direction. Both impurity and 
solvent problems result in the score moving in the 
south-west direction. However, they can be more 
clearly distinguished from Fig. 29 which plots the inte- 
gration of the scores for the second and the third non- 
linear principal components. Here the impurity 
problem corresponds to the score movement in a 
south-west direction while the flow problem corre- 
sponds to the score movement in a north-west direc- 
tion. The results indicate that the accumulated scores 
can be effectively used to extract information resulting 
from the change in process operation and as a result 
can contribute to the localisation of different process 
faults. Fig. 30 shows a 3D plot of principal compo- 
nents 1, 2 and 3. 
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7 Conclusions 

The paper has provided an overview of linear and non- 
linear multivariate statistical process control based on 
the statistical projection techniques of principal compo- 
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nents analysis and to a lesser extent projection to latent 
structures. The methods take full advantage of the mul- 
tivariate nature of the data and as a result are more 
likely to provide early warning of process faults than if 
univariate SPC techniques, which consider one variable 
at a time, were applied. The two areas of particular 
focus were the fdentification of the process moving 
away from the nominal operating region using either 
bivariate plots of the scores or alternatively squared 
prediction error plots, together with contribution plots 
to aid the identification of the variables reflective of the 
cause of the process moving out of control. It was also 
proposed that greater use should be made of the load- 
ings in conjunction with the scores. 

The use of nonlinear principal component analysis 
techniques was shown to be able to effectively extract 
significantly more information from nonlinearly corre- 
lated variables than conventional linear methods. It can 
provide a more effective reduction in the dimensional- 
ity of the problem than linear principal component 
analysis. The studies in this paper have demonstrated 
that nonlinear feature extraction from complex data 
can result in the explanation of more of the data vari- 
ance than a similar number of linear principal compo- 
nents. The use of accumulated nonlinear scores has 
been proposed as an aid to the localisation of process 
faults. The accumulated scores of the nominal data set 
will cluster around zero with the accumulated scores of 
the ‘fault-data’ representing the directions of score 
movement due to various faults. It is believed that the 
further development of the techniques proposed here 
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will make an important contribution to the perform- 
ance monitoring of complex nonlinear processes. 

In both application studies it would have been very 
difficult, if not impossible, to detect the process prob- 
lems using univariate methods. Multivariate SPC and 
plant performance monitoring offers significant strate- 
gic improvements in terms of product quality, product 
consistency, reduced plant down-time, reduced re- 
work, the early detection of process malfunctions and 
increased use of existing plant assets. Clearly its imple- 
mentation will involve a change in operational and 
management cultures commensurate with those associ- 
ated with univariate SPC; it will incur financial and 
manpower investment. The question will then arise 
‘what will it cost to implement’? Perhaps the question 
that should be asked is ‘can we afford not to do it’? 
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