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Multivariate statistical procedures for the analysis and monitoring of batch processes have recently been 
proposed. These methods are based on multiway principal component analysis (PCA) and partial least 
squares (PLS), and the only information needed to exploit them is a historical database of past batches. 
In this paper, these procedures are extended to allow one to use not only the measured trajectory data on 
all the process variables and information on measured final quality variables but also information on ini- 
tial conditions for the batch such as raw material properties, initial ingredient charges and discrete oper- 
ating conditions. Multiblock multiway projection methods are used to extract the information in the 
batch set-up data and in the multivariate trajectory data, by projecting them onto low dimensional spaces 
defined by the latent variables or principal components. This leads to simple monitoring charts, consis- 
tent with the philosophy of SPC, which are capable of tracking the progress of new batch runs and detect- 
ing the occurrence of observable upsets. Powerful procedures for diagnosing assignable causes for the 
occurrence of a fault by interrogating the underlying latent variable model for the contributions of the 
variables to the observed deviation are also presented. The approach is illustrated with databases from 
two industrial batch polymerization processes. 
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Recent trends in most industrialized countries have 
been towards the manufacture of higher value added 
specialty chemicals, which are produced mainly in batch 
reactors. Examples include specialty polymers, pharma- 
ceuticals and biochemicals. There are also many other 
batch type operations, such as crystallization and injec- 
tion moulding, which are very important to the chemi- 
cal and manufacturing industries. Monitoring these 
batch processes is very important to ensure their safe 
operation and to ensure that they produce consistent 
high quality products. Currently some of the difficulties 
limiting our ability to provide adequate monitoring 
include: the lack of on-line sensors for measuring prod- 
uct quality variables, the finite duration of  batch 
processes, the presence of  significant nonlinearities, the 
absence of steady state operation, and the difficulties in 
developing accurate mechanistic models that character- 
ize all the chemistry, mixing and heat transfer phenom- 
ena occurring in these processes. Most of the existing 
industrial approaches for achieving consistent and 
reproducible results from batch processes are based on 
the precise sequencing and automation of  all the stages 
in the batch operation. Monitoring is usually confined 
to checking that these sequences are followed and that 
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certain reactor variables, such as temperatures and reac- 
tant feed-rates, are following acceptable trajectories. In 
some cases, on-line energy balances are used to keep 
track of the instantaneous reaction rate, and the con- 
version or the residual reactant concentrations in the 
reactor. 

Recent research approaches to monitoring batch 
processes have focused on the use of  either fundamental 
mathematical models (based on state estimation meth- 
ods1), or detailed knowledge based models (using expert 
systems or artificial intelligence methods to process the 
data2). These methods are reviewed by Nomikos and 
MacGregor 3 and contrasted with multiway principal 
component analysis (MPCA). Rather than utilizing 
detailed engineering knowledge about the process, as in 
model-based and knowledge-based approaches, MPCA 
utilizes only the information contained in the historical 
database of past batches. Such information is readily 
available for any computer-monitored industrial batch 
process. Although theoretical models of  batch processes 
and on-line sensors for the quality properties are not 
usually available, nearly every batch process does have 
available frequent observations on many easily mea- 
sured process variables, such as temperatures, pressures, 
flowrates and agitator power. Measurements on up to 
30 or more variables may be available every few seconds 
throughout  the entire history of  a batch. 
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Nomikos and MacGregor 3,4 suggested approaches to 
utilize the historical data on the measured process vari- 
able trajectories, and extended these approaches to 
include the final product quality measurements at the 
end of each batch 5. These approaches are further 
extended here to include measured feed-stock properties 
and other variable initial conditions. Powerful proce- 
dures for diagnosing assignable causes for the occur- 
rence of a fault by interrogating the underlying latent 
variable model for the contributions of the variables to 
the observed deviation are also presented. Multivariate 
methods, such as multiway principal components analy- 
sis (MPCA), multiway partial least squares (MPLS) and 
multiblock multiway PLS, are used to extract the infor- 
mation from the trajectories of all the measured batch 
process variables, quality variables and any other feed- 
stock properties, and to project it onto a low dimen- 
sional space defined by the latent vectors or principal 
components. The data reduction is tremendous, since all 
the information from a database of batches is captured 
in a few vectors and matrices which define the reduced 
space. A post analysis of past batches enables one to 
classify similar and dissimilar batches by examining the 
clustering of their projections onto this hyperplane. 
New batches can be monitored in real-time, using a 
sound statistical framework, by tracking their progress 
in this reduced space. These approaches and monitoring 
schemes are illustrated with data from two industrial 
batch polymerization processes. 

Nature of batch data 

To understand the nature of the data available in a 
batch monitoring problem, consider a typical batch run 
in which j=l,2,. . .J variables (such as temperature and 
pressure in the reactor, agitator power etc.) are mea- 
sured at k=l,2,...K time intervals throughout the batch. 
Similar data will exist on a number of similar batch 
runs i=1,2,...I. All these data can be summarized in the 
X (IxJxK) array illustrated in Figure 1. The different 
batch runs have been arranged across the vertical axis, 
the measurement variables along the horizontal axis 
and their time evolution occupies the third dimension. 
Each horizontal slice through this array is a (JxK) 
matrix containing the trajectories of all the variables 

- - ] m , . -  
Initial conditions quality measurements  

..~ 
On-line measurements 

Figure 1 Nature of the batch data bases. Trajectories of variables in 
batch process, X; initial conditions or data from pre-processing 
conditions, Z; quality data, Y. 

from a single batch. Each of its vertical slices is an (Ix J) 
matrix representing the values of all the variables for all 
the batches at a common time interval (k). 

Also available may be data describing the final prod- 
uct quality (such as particle size distribution, molecular 
weight, relative viscosity, etc.); these measurements are 
taken at the end of each batch, for a few variables 
l=l,2,...L. These are summarized in the (IxL) matrix Y. 

Furthermore, for each batch, information usually 
exists on feed-stock properties, preprocessing and other 
conditions; for example measured raw material proper- 
ties and compositions, charges of each ingredient, hold 
times in charge tanks, and discrete operating conditions 
such as the operator shift on which batch is produced, 
raw material suppliers, etc. This information can be 
summarized in an (IxM) matrix Z. 

Projection methods. Multiblock and multiway 
PCA and PLS 

The basic concepts and algorithms of principal compo- 
nents analysis (PCA) and partial least squares (PLS) 6-8 
and their use in multivariate monitoring of process 
operating performance 9-I2 have been extensively pre- 
sented in the literature. A recent review on the use of 
these methods for statistical process control can be 
found in MacGregor and Kourti 13. The projection 
methods are compared to traditional SPC approaches 
in Kourti and MacGregor t4. These procedures are based 
on projecting the information contained in high dimen- 
sion data spaces onto low dimension spaces, defined by 
a small number of latent variables, the scores (fi, 
t2,...t~). These new latent variables summarize all the 
important information contained in the original data 
sets. 

In the PCA approach, the original data set (W) of J 
variables and I observations is projected to an orthogo- 
nal structure, which, in general, is of a lower dimen- 
sionality ~5-~7 

A 
W = ~tap ~ ÷E (1) 

a=l 

The location of this A-dimensional space with respect to 
the original coordinates is given by the loadings (Pa). 
The location of the projection of an observation onto 
the A-dimension space is given by the scores (L). The 
squared perpendicular distance of an observation from 
the projection space, called squared prediction error 
(SPE), gives a measure of how close the observation is 
to this A-dimensional space. E is a residual matrix. 
Ideally the dimension A is chosen such that there is no 
significant process information left in E; rather E should 
represent random error. SPE for observation i, is 

J 
SPE = ~ ej~. 

j=l 
Several methods have been suggested for choosing the 
number of components z7 with cross validation being 
perhaps the most reliablO 8. 
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Monitoring continuous processes utilizing the PCA 
approach involves monitoring both the scores and the 
SPEI°; here W contains observations of the process vari- 
ables. As in the case of the traditional SPC approaches, 
a normal operating region is defined from past histori- 
cal data (both for the SPE and the scores) and each new 
observation is compared to this normal region. 

In the PLS approach, both the process (W) and qual- 
ity (Y) variables are used. PLS simultaneously reduces 
the dimensions of W and Y spaces, to find latent vectors 
for W and Y which have greatest covariance. Utilizing 
PLS, an empirical model is developed to relate process 
(W) and product (Y) variables under normal operating 
conditions. Then, by monitoring the process variables 
only, and projecting them to the reduced dimensional 
space defined by the PLS latent vectors (tl, t2, ...ta), we 
monitor the variation in the process variables that are 
more influential on the product quality variables a°. 

Multiblock PLS is a technique in which the process 
variables W can be divided into subsets (blocks) of vari- 
ables (W~, W2 .... W,). These subsets are then related 
simultaneously to Y. The W blocks may have equal or 
different weights. Multiblock PLS is used to either 
break a process into smaller groups and facilitate the 
diagnostic procedure or to cluster together variables of 
equal importance or with similar characteristics and 
weigh them together ~2. 

Extension to matrices with higher dimensions 

When a three or higher dimensional matrix describes 
the data to be analysed (as matrix X in Figure 1), 'mul- 
tiway' projection methods may be utilized. The relation 
of PCA and PLS to multiway PCA and PLS (MPCA, 
MPLS) has been described in a series of articleslg-2L 
Nomikos and MacGregor 3,4 applied MPCA to analyse 
batch data and detailed the procedures for monitoring 
batch processes. MPCA is equivalent to performing 
PCA on a large two-dimensional matrix formed by 
unfolding the three-way array X (shown in Figure 1) in 
one of three possible ways. Nomikos and MacGregor 3,4 
transformed the three-dimensional array X to a two- 
dimensional array by unfolding X in such a way as to 
put each of its vertical slices (Ix J) side by side to the 
right, starting with the one corresponding to the first 
time interval. The resulting two-dimensional matrix has 
size (IxJK).  This unfolding allows for analysing the 
variability among the batches in X by summarizing the 
information in the data with respect both to variables 
and their time variation. With this particular unfolding, 
by subtracting the mean of each column prior to per- 
forming the MPCA, it is the variation about the mean 
trajectories of all the variables that is being analysed. 
Since most of the nonlinearities are removed by remov- 
ing the average trajectory from each variable, we have 
found that nonlinear PLS methods offer no improve r 
ment in most of the cases we have investigated where 
the method is used for process monitoring. 

In this approach, MPCA classifies batches as good or 
bad based on their similarity to a group of previous 

batches that produced an a~ceptable product. Informa- 
tion from quality measurements is not utilized directly. 
The approach is based on the basic concepts of statisti- 
cal process control (SPC), whereby the future behaviour 
of a process is monitored by comparing it against that 
observed in the past when the process was performing 
well, that is in a state of statistical control. Control lim- 
its for the monitoring charts are derived from the sta- 
tistical properties of this historical reference distribution 
of past 'good' batches, Therefore, the approach relies 
upon the idea that future 'good' batches should have 
similar behaviour to past ones. 

MPLS may be used to utilize information from the 
product quality 4. Once the X matrix has been unfolded 
into a two-dimensional matrix, PLS carl be performed 
between Y and this new matrix to relate the quality 
characteristics to the process conditions. By utilizing the 
quality measurements the batches may be classified in a 
way that they are more predictive of Y - in this case 
variables that exhibit high variability but do not affect 
the quality of the product are weighted less heavily. 

When extra information relevant to the batch process 
is available (in the form of matrix Z in Figure 1) this 
information may also be utilized, by performing multi- 
way multiblock PLS. Matrix Z and the unfolded X 
matrix may be treated as two blocks, scaled and 
weighted appropriately. Multiblock PLS can then be 
applied in the way described in MacGregor et al. 12. The 
weight of each block may be chosen based on experi- 
ence with the process. When no prior information exists 
each block may be given equal weight. It is suggested 
that several models be derived where the weight ratio of 
the two blocks changes; as a rule of thumb the best 
model is the one in which the cross-validated percentage 
explained in Y is equal to or higher than that explained 
by a PLS model using each block separately. 

Analysis of batch operating records 

The use of multiblock multiway PLS to analyse histori- 
cal data bases of batch processes is illustrated here on 
data from 61 batches from an industrial polymerization 
process. For each batch, the trajectories of 10 variables 
measured during the run at 250 time intervals were pro- 
vided, together with measurements of 4 quality vari- 
ables obtained at the end of the run. Measurements of 
14 variables that described raw material charges and 
average conditions in a process that preceded the poly- 
merization were also available. Batches 56, 59, 60 and 
61 were characterized by the company as bad, based on 
the values of the measured quality variables; batch 21 
had one quality measurement missing. 

Multiblock multiway PLS was performed on all the 
61 batches to analyse this data base. The variables that 
corresponded to preprocessing were grouped as one 
block Z(61 × 14); the second block was assigned to the 
unfolded three - way array X (61 × i0 × 250) that 
described the polymerization conditions; the quality 
variables were all assigned in a (61 x 4) matrix, Y. 



280 Analysis, monitoring and fault diagnosis: 7:. Kourti et al. 

Figures 2a, 2b and 2c show projections of these 61 
batches on the latent variable planes for the pre-pro- 
cessing, polymerization and quality variables, respec- 
tively. Figure 2a shows the projection of the 
pre-processing on the first two components (q vs h). 
Batches 56, 59, and 61 (characterized by the company 
as 'bad') are out of the main cluster formed by the rest 
of the batches for the pre-processing stage. It should be 
noted, however, that a few more batches appeared out 
of the main cluster in the plane of the first two compo- 
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F i g u r e  2 Projection on latent variables determiend by multiblock 
multiway PLS: a, preprocessing; b, polymerization; c, quality data 

nents (batches 44, 45, 55) and some in the other com- 
ponents (batch 36, 40). Figure 2b shows the projection 
of the polymerization process data (X) on the plane 
defined by the first and third latent variables. Batches 
56, 59, 60 appear out of the main cluster. Projections on 
planes defined by the rest of the components showed 
that batches 36, 40, 44, 50, 56, 59 and 60 are different 
from the rest of the batches. Although based on the 
four quality properties only batches 56, 59, 60 and 61 
were characterized as bad by the company; the fact that 
batches 36, 44 and 45 appear in both the preprocessing 
and the polymerization as outliers shows that these are 
not random outliers but there is some consistent dis- 
crepancy. Projection on the latent variables of the qual- 
ity space Y (u~ vs u2) also indicates that batches 56, 59 
and 60 are outside of the main cluster of normal 
batches. 

At this stage it is established that the method is 
capable of discriminating between 'good' and 'bad' 
batches with the available process data; in other words 
the system is observable. 

Modelling, post analysis, fault diagnosis 

The set of 49 batches (after batches 21, 36, 40, 44, 45, 
50, 55, 56, 59, 60 and 61 were excluded) was used to 
develop a model to relate the preprocessing and poly- 
merization conditions to the product quality properties, 
using multiblock multiway PLS. The blocks were scaled 
such that the variance of the second block (X) was four 
times the variance of the first (Z). The model results are 
summarized in Table 1. Four latent variables explain 
56% of the variability in the product quality. The cumu- 
lative percentage variation explained per block as well 
as the weight of each block in explaining Y, is included 
in the table. Note that in all the components the poly- 
merization conditions (block X) have a much higher 
weight than the pre-processing conditions. 

The model built from the 49 batches summarizes 
information on the normal operating conditions for the 
batch polymerization. Batches that were detected as 
'unusual' (i.e. out of main clusters) in the preliminary 
analysis can be checked against this model to determine 
the reason for their differences. Figures 3a and 3b show 
the SPE per batch, in the preprocessing and polymer- 
ization respectively, for all the 61 batches, when the 
model for the good batches is used; the dashed line in 
the figures gives the 99% limit of the SPE for the good 
batches. From these figures it can be seen that batches 

T a b l e  1 Multiblock - multiway PLS results, batch process I 

Component Cum % Cum % Cum % % 
explain explain explain Weight Z 
Z X Y 

% 
Weight X 

1 29 8 21 31 69 
2 40 21 31 9 91 
3 54 27 42 17 83 
4 62 31 56 24 76 
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Figure 3 Squared prediction error for 61 batches: a, preprocessing; 
b, polymerization 

36, 40, 44, 45, 55, 56, 59 and 61 do not follow the pat- 
tern of the rest of the batches in both the preprocessing 
and polymerization. Contribution plots 12,22 can be used 
to interrogate the model and determine the reason for 
the difference for each of  the 'unusual' batches. 

Figure 4a shows the contribution of each variable in 
the preprocessing (Z) to the SPE for batch 56; variable 
9 appears to contribute significantly to this error. 
Indeed by examining the data base it was revealed that 
the value of this variable (amount of  an ingredient 
changed) was much lower than usual. Figure 4b shows 
the contribution of each polymerization variable (X) to 
the SPE of batch 56. Variable 4 has the highest contri- 
bution. Figure 4c shows the contribution of the poly- 
merization variables at each time interval to the SPE; it 
is clear that events that took place at time (82-95) and 
later at times, (135-155), (167-173) and (201-207) have 
the highest contribution to this error. Looking back at 
the data base, the trajectory of variable 4 for this batch 
showed a different trend from the other batches at these 
time intervals. 

On-line monitoring and fault diagnosis 

The model built to summarize the information con- 
tained in the 49 good batches and the statistical distri- 
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Figure 4 Contribution plots for batch 56: a, contribution of prepro- 
cessing variables; b, contribution of  polymerization variables; e, con- 
tribution per time interval during batch run 

bution of the latent variables and SPE can be used as a 
statistical reference to classify new batches as normal 
( 'good') or abnormal ('bad'), on-line, as the data are 
collected and the polymerization evolves. As with the 
traditional SPC approach, this classification is based on 
the similarity and statistical consistency of the trajec- 
tory measurements of a new batch with the historical 
reference distribution of trajectories from normal oper- 
ation as summarized by the model. 



282 Analysis, monitoring and fault diagnosis: T. Kourti et al. 

The procedure is described in Nomikos and MacGre- 
gor 3-s. Limits are calculated for the projection space and 
the  res iduals ,  at each time interval, as the batch evolves. 
New batches are classified by monitoring the latent vari- 
ables (scores) and the instantaneous SPEk, at each time 
interval k. Both of  these quantities are necessary for 
monitoring: the scores check if each new observation 
from the new batch remains within the normal operat- 
ing region in the projection space, and SPE~ at time k 
checks if the distance of  the new observation from the 
projection space is within normal limits for that time 
interval. 

The problem with monitoring a new batch on-line is 
that the ( JxK)  matrix of  the new batch is not complete; 
at each time interval during the batch operation the 
matrix has all measurements only up to this time inter- 
val. Approaches suggested for handling this situation, 
which consist of filling up the remainder of the matrix 
with estimates of  the future observations or treating 
them as missing data, are discussed in Nomikos and 
MacGregor 4. In this example any future value of each 
variable is assumed to have a deviation from the target 
value equal to the current one. 

Figure 5a and 5b show the results that one would 
have obtained for batch 56, had a multiway PLS model 
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Figure 5 On-line monitoring of batch 56, using multiway PLS: a, 
squared prediction error; b, progression of batch as projected on sec- 
ond and third latent variables 

been in use on-line, when the data for this batch were 
becoming available. Figure 5a gives the SPE~ response 
as a function of  time; note that the SPE~ shows excur- 
sions out of normal operation at time intervals 80-90 
and then 135-155 and 201-207 (compare with results of 
post analysis for this batch, Figure 4). (The solid line 
corresponds to a 99% limit and the dashed line to a 95% 
limit). Figure 5b gives the projection of the batch evolu- 
tion on the second and third latent variable space (t2/t3); 
each asterisk on the plot corresponds to an updated 
estimate of t2 and t 3 as the batch evolves; numbered 
asterisks indicate corresponding time intervals. The 
ellipses give the 95% and 99% confidence intervals in 
which the value of  t2/t 3 should fall at the end of the reac- 
tion. Note that the estimates of  tz/t 3 leave the ellipse at 
time interval k=82 and stay out of limits until the end 
of  the reaction (k=249). Contribution plots on the SPEk 
and the t scores can be constructed to interrogate the 
model and diagnose an assignable cause for the prob- 
lem 23. 

Another batch polymerization process 

The second example is from another batch polymeriza- 
tion process which consists of two batch stages and for 
which information on initial feed quality, hold up times 
and the shift corresponding to a batch was available. 
Data for 92 batches were provided; no batches were 
characterized by the company as bad. In this case the 
data were arranged for the multiblock multiway PLS as 
follows. Two blocks were assigned to the two batch 
stages: X 1 for the unfolded threeway array (92x 19x86) 
with trajectories of 10 variables for 86 time intervals for 
the first stage; Xz for the unfolded three-way array 
(92×21×231) with trajectories of 21 variables for 231 
time intervals for the second stage. Measurements of 
nine variables that described raw material qualities were 
assigned to block Zl (92 x 9). Data (eight variables) 
giving the shifts on which each batch was produced and 
hold up times were assigned to block Z2 (92 × 8). Two 
quality variables were available for each batch and 
arranged in Y (92x2). 

Multiblock multiway PLS was performed on all the 
92 batches. Figures 6a to 6d show the projections of 
each one of  the blocks on the first two latent variable 
planes. In the projections of block Zt (Figure 6a) the 
points fall in groups of three or four, because the same 
lot of raw material is used for three or four batches. 
Batches 54-57 had an unusual value for a raw material 
property that does not seem to have had a significant 
effect on the product. From the analysis of Block Z: it 
was established that all the operator shifts produced 
same quality and followed similar operating procedures. 
Batches 1 and 30 had unusual hold up times. In Block 
)(1, batch 58 appeared as an outlier; this batch had 
unusual trajectories but it does not seem to have had an 
effect on the two product qualities measured. Finally in 
Block Xz, batches 1 and 30 again appeared as outliers; 
upon examination of the data base it was discovered 
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that these two batches had different polymerization tra- 
jectories from the others. From the quality data it was 
found that the product of  batch 30 had border-line 
qualities. The abnormal behaviour of  batches 1 and 30 
in the second batch stage could be related to events 
described in block Z2. 

Batches 54--57, 58, 1 and 30 were excluded from the 
data base and a multiblock multiway PLS model was 
developed. Each block was given equal variance. The 
model is summarized in Table 2. The highest percentage 
in quality variability is explained by blocks Z2 and X 2 
which were initially judged by the company as the most 
important ones. 

C o n c l u d i n g  r e m a r k s  

Batch analysis and monitoring methods based on 
MPCA and MPLS have been extended by using multi- 

Table 2 Multiblock-multiway PLS results, batch process 2 

Component % wieght % weight %weight %weight Cum% 
Zi Z2 Xi X2 Y 

1 9.4 45.5 16.5 28.6 13.5 
2 28 42.8 18.2 11.0 31.75 
3 32 6 32 30 47.68 

block-multiway PLS. This extension allows one to uti- 
lize the historical data on the measured process variable 
trajectories, the measured feed-stock properties and 
other variable initial conditions and the final product 
quality measurements at the end of each batch. 

The proposed monitoring charts are in accordance 
with the SPC requirements in that they can be easily 
displayed and interpreted, and they can quickly detect a 
fault. Furthermore,  it is also possible to provide the 
operators with diagnostic information by interrogating 
the underlying MPCA, MPLS or multiway-multiblock 
PLS model. 

As in all inferential approaches, the fundamental 
assumptions of comparable runs and observable events 
of interest must hold for the method to work. The first 
assumption states that the method is valid as long as the 
reference database is representative of the process oper- 
ation. If major modifications are made to the process, 
then one has to build a new database which embodies 
the changes and re-apply the method. The second 
assumption expresses the requirement that the events 
which one wishes to detect must be observable from the 
measurements that are being collected. No monitoring 
procedure can detect events that do not affect the mea- 
surements. 

The power of  the statistical approach presented here 
lies in the fact that it utilizes the unsteady state trajec- 
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tory data on all measured variables in a truly multivari- 
ate manner, so as to account not only for the magnitude 
and trend of the deviations in each measured variable 
from its average trajectory, but also for the high degree 
of correlation in both time and among the deviations in 
all the variables. The objective of the monitoring proce- 
dure is to detect and eliminate faults from future 
appearance, and thereby shrink the control limits and 
work towards a more consistent production of quality 
product. 
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